Pytorch 损失函数 Mean Squared Error

本文详细介绍了PyTorch中均方误差(MSE)损失函数的使用方法及其实现过程。通过实例演示了如何计算预测值与实际值之间的MSE,展示了MSE与L2范数的关系,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch的损失函数定义在torch.nn.functional下,可以直接使用。

Mean Squared Error(MSE)即均方误差,常用在数值型输出上:

其中θ是网络的参数,取决于使用的网络结构,例如如果只是普通的线性感知器,那么:

注意MSE和L2范数相比,L2范数是做了开平方操作的,所以如果要使用它来求MSE,最后只要.pow(2)平方一下就可以了,示例代码:

import torch

# 实际值
y = 0.2
# 预测值:采样自N~(0,1)的10个值
pred = torch.randn(10)
# 计算MSE
mse = (pred - y).norm(2).pow(2)
print(mse)

输出结果:

tensor(10.1975)

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洪流之源

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值