ACM-欧几里德

在一些数学类的题目中,我们时不时会遇上这样一种问题,就是我们需要讨论某些数的公约数gcd,但作为一种特殊情况,我们需要求出它们的最大公约数。首先,我们最容易想到的就是去枚举约数,但是有没有更快的算法呢?答案就是欧几里德算法。

1、普通数据的欧几里德算法

欧几里德算法,又名辗转相除法,这是一个比较古老的算法了。这个算法的原理是恒等式:gcd(a,b)=gcd(b,a%b),并且它的边界是gcd(a,,0)=a。于是我们便可以由此写出源代码了,程序分为迭代和递归两个版本,具体使用哪种看情况而定,代码如下:

// 迭代版本
int gcd (int a, int b)
{
    int r = a%b;
    while (r) 
    {
        a = b;
        b = r;
        r = a%b;
    }
    return b;
}

// 递归版本
int gcd (int a, int b)
{
    return b==0 ? a : gcd(b, a%b);
}

2、高精度数据的gcd算法

有时候我们遇到的数据很大,理所应当应该使用高精度类存储,传送门(点击打开链接),但在这种情况下又应该使用什么样的方法去求数据的最大公约数呢?如果还用普通的欧几里德去求解,多次的求模运算可能会超时,所以我们应该另辟蹊径。新的方法基于以下几个性质:

(1)如果a,b都是偶数,那么gcd(a,b)=gcd(a/2,b/2)*2

(2)如果a是偶数,b是奇数,那么gcd(a,b)=gcd(a/2,b)

(3)如果a,b都是奇数,那么gcd(a,b)=gcd((a-b)/2,b)

有了上面的规律,就可以比较快速的算出大数与大数的gcd,时间复杂度为o(log(max(a,b))),具体代码如下:

// bign为高精度类型
bool iseven (bign x)
{
    if(x.data[0]%2==0)
        return true;
    return false;
}

bign gcd (bign a, bign b)
{
    bign k=1, ans;
    while (1)
    {
        if (a == 0)
        {ans = b; break;}
        if (b == 0)
        {ans = a; break;}
        if (a < b)
        {
            bign temp = a;
            a = b;
            b = temp;
        }
        else
        {
            if (iseven(a))
            {
                if (iseven(b))
                {
                    a = a/2;
                    b = b/2;
                    k=k*2;
                }
                else a = a/2;
            }
            else
            {
                if (iseven(b)) b = b/2;
                else a = (a-b)/2;
            }
        }
    }
    return ans*k;
}

3、最大公约数的扩展

gcd还有一个用处,就是我们可以利用它,求出两个数据的最小公倍数lcm。原理就是唯一分解定理,这里就不详细讲解了,具体可以参看训练指南177页。通过分解得出的结论就是:gcd(a,b)*lcm(a,b)=a*b,于是我们不难写出:lcm(a,b)=a/gcd(a,b)*b,注意,为了避免精度丢失,我们将前面的等式写成了先除后乘的形式!


好了,gcd和lcm就讨论到这里,现在可以拿一些题目来练练了,POJ:3101,HDOJ:1695。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值