在一些数学类的题目中,我们时不时会遇上这样一种问题,就是我们需要讨论某些数的公约数gcd,但作为一种特殊情况,我们需要求出它们的最大公约数。首先,我们最容易想到的就是去枚举约数,但是有没有更快的算法呢?答案就是欧几里德算法。
1、普通数据的欧几里德算法
欧几里德算法,又名辗转相除法,这是一个比较古老的算法了。这个算法的原理是恒等式:gcd(a,b)=gcd(b,a%b),并且它的边界是gcd(a,,0)=a。于是我们便可以由此写出源代码了,程序分为迭代和递归两个版本,具体使用哪种看情况而定,代码如下:
// 迭代版本
int gcd (int a, int b)
{
int r = a%b;
while (r)
{
a = b;
b = r;
r = a%b;
}
return b;
}
// 递归版本
int gcd (int a, int b)
{
return b==0 ? a : gcd(b, a%b);
}
2、高精度数据的gcd算法
有时候我们遇到的数据很大,理所应当应该使用高精度类存储,传送门(点击打开链接),但在这种情况下又应该使用什么样的方法去求数据的最大公约数呢?如果还用普通的欧几里德去求解,多次的求模运算可能会超时,所以我们应该另辟蹊径。新的方法基于以下几个性质:
(1)如果a,b都是偶数,那么gcd(a,b)=gcd(a/2,b/2)*2
(2)如果a是偶数,b是奇数,那么gcd(a,b)=gcd(a/2,b)
(3)如果a,b都是奇数,那么gcd(a,b)=gcd((a-b)/2,b)
有了上面的规律,就可以比较快速的算出大数与大数的gcd,时间复杂度为o(log(max(a,b))),具体代码如下:
// bign为高精度类型
bool iseven (bign x)
{
if(x.data[0]%2==0)
return true;
return false;
}
bign gcd (bign a, bign b)
{
bign k=1, ans;
while (1)
{
if (a == 0)
{ans = b; break;}
if (b == 0)
{ans = a; break;}
if (a < b)
{
bign temp = a;
a = b;
b = temp;
}
else
{
if (iseven(a))
{
if (iseven(b))
{
a = a/2;
b = b/2;
k=k*2;
}
else a = a/2;
}
else
{
if (iseven(b)) b = b/2;
else a = (a-b)/2;
}
}
}
return ans*k;
}
3、最大公约数的扩展
gcd还有一个用处,就是我们可以利用它,求出两个数据的最小公倍数lcm。原理就是唯一分解定理,这里就不详细讲解了,具体可以参看训练指南177页。通过分解得出的结论就是:gcd(a,b)*lcm(a,b)=a*b,于是我们不难写出:lcm(a,b)=a/gcd(a,b)*b,注意,为了避免精度丢失,我们将前面的等式写成了先除后乘的形式!
好了,gcd和lcm就讨论到这里,现在可以拿一些题目来练练了,POJ:3101,HDOJ:1695。