移动端深度学习框架小结

---------------- 2018.12.07 分割线 ----------------

各大公司开源了自己的移动端深度学习框架,其中包括TensorFlow Lite、Caffe2、MACE、paddle-mobile(MDL)、FeatherCNN、NCNN等。我们参考开源的测试结果,结合自己整理的数据,针对主流的异动单深度学习框架进行简单对比及介绍。

框架机构支持平台StarsForks
Caffe2FacebookARM8270*2080*
TF_liteGoogleARM**
MACEXiaomiARM/DSP/GPU2442412
paddle-mobileBaiduARM/GPU4038774
FeatherCNNTencentARM658170
NCNNTencentARM46061163

二、性能对比 (截至2018.09)

1. NCNN / FeatherCNN / MACE

CPU:kryo&2.15GHz*2 (ms)

框架SqueezeNet_v1.1MobileNet_v1ResNet18
NCNN47.6468.71142.28
FeatherCNN36.3958.92100.13
MACE42.3765.18160.7

2. paddle-mobile (MDL)

CPU:高通835 (ms)

框架squeezenetmobilenet_v1googlenet_v1
1 Thread82.41105.43341.25
2 Threads56.1762.75233.35
4 Threads36.4537.13158.55

三、框架评价

框架集成成本库文件大小模型支持程度文档完整程度速度
caffe2一般良好优秀良好一般
TF_Lite一般良好优秀良好优秀
MACE良好优秀良好良好优秀
MDL优秀优秀良好良好良好
FeatherCNN良好优秀良好良好优秀
NCNN优秀优秀良好优秀优秀

四、几款移动端深度学习框架分析

移动端的框架,基本不支持训练,只支持前向推理。

1.腾讯的FeatherCNN和ncnn

这两个框架都是腾讯出的,FeatherCNN来自腾讯AI平台部,ncnn来自腾讯优图。

重点是:都开源,都只支持CPU

ncnn开源早点,文档、相关代码丰富一些,使用者相对多一些。FeatherCNN开源晚,底子很好,从测试结果看,速度具有微弱优势。

2.百度的 paddle-mobile(MDL)

MDL可以支持CPU和GPU,FPGA在开发中。

3.小米的 MACE

它有几个特点:异构加速、汇编级优化、支持各种框架的模型转换。

小米支持的GPU不限于高通,这点很通用,很好,比如瑞芯微的RK3299就可以同时发挥出cpu和GPU的好处来。

 

 

 

1. 起因

昨天看到小米开源了深度学习框架MACE(https://github.com/XiaoMi/mace) 
看到它有几个特点:异构加速、汇编级优化、支持各种框架的模型转换。

整体来看,料很足,特别是异构的支持,非常有诚意。 
有了异构,就可以在CPU、GPU和DSP上跑不同的模型,实现真正的生产部署,比如人脸检测、人脸识别和人脸跟踪,可以同时跑在不同的硬件上。小米支持的GPU不限于高通,这点很通用,很好,比如瑞芯微的RK3299就可以同时发挥出cpu和GPU的好处来。

看到知乎上也有讨论:如何评价小米开源AI框架MACE?

贴张图 

image

image

 

2. 说说其它几款移动端深度学习框架

既然是移动端的框架,基本不支持训练,只支持前向推理。

2.1 SNPE

这是骁龙的官方SDK,不开源。主要支持自家的DSP、GPU和CPU。

由于对DSP的支持,使得骁龙在没有NPU的情况下没有被华为甩太远。而且只要后续DSP够强,甩开NPU也未可知。

2.2 腾讯的FeatherCNN和ncnn

这两个框架都是腾讯出的,FeatherCNN来自腾讯AI平台部,ncnn来自腾讯优图。

重点是:都开源,都只支持cpu

ncnn开源早点,性能上有微弱优势(当前是201806),用的人多点。FeatherCNN开源晚,底子很好。

github: FeatherCNN, ncnn

知乎讨论:

如何评价腾讯开源高性能神经网络计算库 FeatherCNN?

ncnn与tensorflow lite相比有什么特有什么特点?

2.3 百度的mobile-deep-learning(MDL)

我不是很了解,主要从知乎和github上了解的。 
看样子是支持cpu和gpu的,没看到DSP。

开源地址:https://github.com/baidu/mobile-deep-learning

知乎讨论(如何评价百度刚刚开源的mobile-deep-learning?)上,有人说它有很重的抄袭caffe的痕迹。

2.4 其它

在移动端,caffe、tensorflow lite都可以考虑,只是可能没有上门的框架效率高。

另外据说支付宝有xNN的深度框架,商汤有PPL框架,这两个都是企业自用没有开源,听听就好。

国内杭州九言科技的开源方案(github),用的人不多,可以参考。

3. 总结

上面的大部分框架都是主要面向android的,但是用于arm-Linux也是可以的。

现在越来越多的厂商开源移动端的深度学习框架,对于从业者是好事,有更多的选择,不用从头造轮子。

我个人比较欣赏ncnn和小米的MACE,比较欣赏其异构加速能力,只是MACE刚开源,可能还有不少坑。

相信将来会有更多的技术手段用于移动端部署深度学习网络,包括模型压缩、异构加速、汇编优化等。
 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页