图论 —— 竞赛图

【概述】

竞赛图是一定义在有向图上的概念,图中每对不同的顶点通过单个有向边连接,即每对顶点间都有一条有向边。

设 D 为 n 阶有向简单图,若 D 的基图为 n 阶无向完全图,则 D 为 n 阶竞赛图。

简单来说,竞赛图就是将完全无向图的无向边给定了方向。

竞赛图有许多性质,比如在哈密顿问题中,对于 n 阶竞赛图,当 n 大于等于 2 时一定存在哈密顿通路,关于 n 阶竞赛图下构造有向图的哈密顿通路:点击这里

【兰道定理】

兰道定理(Landau’s Theorem)是用来判定竞赛图的定理。

将一个竞赛图的每一个点的出度从小到大排序后得到的序列称为竞赛图的比分序列

那么,兰道定理的内容为:

对于一个长度为 n 的序列 S=(s_1\leqslant s_2\leqslant...\leqslant s_n ),n\geqslant 1 是合法的比分序列,当且仅当:\forall 1\leqslant k\leqslant n,\sum_{i=1}^k s_i\geqslant \binom{k}{2},且 k=n 时,式子必须要取等

关于兰道定理的证明:点击这里

【例题】

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值