图论 —— 环与块

【概述】

在图论中,环与块的问题十分常见,包括求最小环、判负环、DAG 图判定、求图中是否存在环、求连通块等

【例题】

  1. Wormholes(POJ-3259)(Ford 判负环)点击这里
  2. Currency Exchange(POJ-1860)(Ford 求递增环)点击这里
  3. DAG 图判定(51Nod-2143)(DAG 图判定)点击这里
  4. 两点(51Nod-1416)(dfs 判环)点击这里
  5. Mouse Hunt(CF-1027D)(dfs 判环+并查集)点击这里
  6. Applese 的 QQ 群(2019牛客寒假算法基础集训营 Day4-F)(拓扑排序判环)点击这里
  7. Lake Counting(信息学奥赛一本通-T1249)(dfs 求连通块)点击这里
  8. 连通块(信息学奥赛一本通-T1335)(dfs 求连通块)点击这里
  9. Oil Deposits(HDU-1241)(dfs 求连通块)点击这里
  10. Welcome Party(ZOJ-4109)(并查集求连通块+优先队列)点击这里
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1. 最小生成树问题:给定一个无向连通图,求其生成树中所有边的权值之和最小的生成树。该问题可用Prim算法和Kruskal算法求解。 2. 最短路径问题:给定一个有权有向图和两个节点,求从起点到终点的最短路径。该问题可用Dijkstra算法和Bellman-Ford算法求解。 3. 网络最大流问题:给定一个有向图,其中每条边都有一个容量值,同时存在一个源点和一个汇点,求从源点到汇点的最大流量。该问题可用Ford-Fulkerson算法和Edmonds-Karp算法求解。 4. 二分图匹配问题:给定一个二分图,其中左边节点和右边节点分别为集合L和集合R,求从L到R的最大匹配数。该问题可用匈牙利算法和网络流算法求解。 5. 最小割问题:给定一个有向图和两个节点,将图分成两个部分,使该两个节点在不同的部分中,且割的权值最小。该问题可用最大流最小割定理求解。 6. 需求最小路径覆盖问题:给定一个有向无环图,找到一些路径,覆盖所有节点,且要求路径数最少。该问题可用拓扑排序和网络流求解。 7. 贪心算法:给定一个无向图和节点权值,将其分成若干个联通子图,使每个子图的边权之和最小。该问题可用Kruskal算法求解。 8. 最小直径生成树问题:给定一个无向图,求其直径最小生成树,即边数最少的生成树,使得树的最远节点距离最近。该问题可用Prim算法和分治算法求解。 9. 最优路径问题:给定一个无向图和节点关键值,从一个起点开始,经过若干关键点,最终到达目的地,使得路径上的节点关键值之和最小。该问题可用动态规划求解。 10. 路径选择问题:给定一个有权有向图和两个节点,找到一条路径,使得路径上不存在与该路径权值和相同的另一条路径。该问题可用哈希表和树状数组求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex_McAvoy

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值