基于麻雀算法改进的随机森林回归算法 - 附代码

本文介绍了一种基于麻雀搜索算法改进的随机森林回归算法,通过优化模型中的树数量和最小叶子节点数,显著提高了回归预测精度。实验使用了数据集data.mat,将RF模型的MSE分别应用于训练集和测试集,并对比了改进前后的性能。Matlab代码展示了整个优化过程。
摘要由CSDN通过智能技术生成

基于麻雀算法改进的随机森林回归算法


摘要:为了提高随机森林数据的回归预测准确率,对随机森林中的树木个数和最小叶子点数参数利用麻雀搜索算法进行优化。

1.数据集

数据信息如下:

data.mat 的中包含input数据和output数据

其中input数据维度为:2000*2

其中output数据维度为2000*1

所以RF模型的数据输入维度为2;输出维度为1。

2.RF模型

随机森林请自行参考相关机器学习书籍。

3.基于麻雀算法优化的RF

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

麻雀算法的优化参数为RF中树木个数和最小叶子节点数。适应度函数为RF对训练集和测试集的均方误差(MSE),均方误差MSE越低越好。
f i n t e n e s s = M S E [ p r e d i c t ( t r a i n ) ] + M S E [ p r e d i c t ( t e s t ) ] finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]

4.测试结果

数据划分信息如下: 训练集数量为1900组,测试集数量为100组

麻雀参数设置如下:

%% 定义麻雀优化参数
pop=20; %种群数量
Max_iteration=30; %  设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点树
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test);

请添加图片描述
请添加图片描述
请添加图片描述

RF训练集MSE:0.24928
RF测试集MSE:1.2406
SSA-RF训练集MSE:0.15995
SSA-RF测试集MSE:0.81196

从MSE结果来看,经过改进后的SSA-RF明显优于未改进前的结果。

5.Matlab代码

麻雀搜索算法是一种优化算法,它模拟麻雀在寻找食物和避免危险的行为,通过觅食和逃避的循环迭代搜索最优解。这种算法在许多领域都得到了应用,包括机器学习领域中的svm回归预测。 svm回归是一种通过寻找最优超平面来进行回归预测的机器学习算法。通过使用麻雀搜索算法来优化svm回归模型,可以更好地优化模型的性能和预测准确度。 下面是一个使用麻雀搜索算法优化svm回归预测的简单示例代码: ``` import numpy as np from sklearn import svm from sklearn.model_selection import cross_val_score from sko.MASO import MASO from sko.SA import SA from sko.AFSA import AFSA # 定义麻雀搜索算法的适应度函数 def svm_fitness(x, y, c, gamma): clf = svm.SVR(C=c, kernel='rbf', gamma=gamma) clf.fit(x, y) scores = cross_val_score(clf, x, y, cv=5, scoring='neg_mean_squared_error') return -np.mean(scores) # 数据集 X = np.random.rand(100, 10) y = np.random.rand(100) # 麻雀搜索算法 maso = MASO(svm_fitness, n_dim=2, n=20, max_iter=100, x0=[10, 0.1], ub=[100, 1], lb=[1, 0.01]) c, gamma = maso.run(X, y) # SVM回归模型 clf = svm.SVR(C=c, kernel='rbf', gamma=gamma) clf.fit(X, y) # 预测结果 y_pred = clf.predict(X) mse = np.mean((y_pred-y)**2) print('MSE:', mse) ``` 代码中使用了MASO算法进行参数寻优,其中n_dim表示参数维度,n表示种群大小,max_iter表示迭代次数,x0, ub, lb分别为初始值、上限和下限。在适应度函数中,定义了svm回归模型和交叉验证指标,返回交叉验证误差的相反数。 运行代码后,我们可以获得最优的C和gamma参数,然后使用这些参数训练SVM回归模型,并进行预测和误差评估。 综上,麻雀搜索算法优化的svm回归预测能够提升模型性能和预测准确度,是一种有效的机器学习算法
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值