基于吉萨金字塔建造算法改进的随机森林分类算法 - 附代码

基于吉萨金字塔建造算法改进的随机森林分类算法 - 附代码


摘要:为了提高随机森林数据的分类预测准确率,对随机森林中的树木个数和最小叶子点数参数利用吉萨金字塔建造搜索算法进行优化。

1.数据集

数据的来源是 UCI 数据库中的肿瘤数据。数据信息如下:

data.mat 的大小为569*32。

其中第2列为标签数据,包含两类标签。

第3列到最后一列为特征数据。

所以RF模型的数据输入维度为30;输出维度为1。

2.RF模型

随机森林请自行参考相关机器学习书籍。

3.基于吉萨金字塔建造算法优化的RF

吉萨金字塔建造算法原理请参考:https://blog.csdn.net/u011835903/article/details/120418542

吉萨金字塔建造算法的优化参数为RF中树木个数和最小叶子节点数。适应度函数为RF对训练集和测试集的预测错误率,错误率越低越好。
f i n t e n e s s = e r r o r R a t e [ p r e d i c t ( t r a i n ) ] + e r r o r R a t e [ p r e d i c t ( t e s t ) ] finteness = errorRate[predict(train)] + errorRate[predict(test)] finteness=errorRate[predict(train)]+errorRate[predict(test)]

4.测试结果

数据划分信息如下: 训练集数量为500组,测试集数量为69组

吉萨金字塔建造参数设置如下:

%% 定义吉萨金字塔建造优化参数
pop=20; %种群数量
Max_iteration=30; %  设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点数
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,P_train,T_train,P_test,T_test);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,经过改进后的吉萨金字塔建造-RF明显优于未改进前的结果。

5.Matlab代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值