智能优化算法应用:蜣螂算法优化脉冲耦合神经网络的图像自动分割
摘要:本文利用蜣螂算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。
1.蜣螂算法
蜣螂算法原理请参考:https://blog.csdn.net/u011835903/article/details/128280084
2.PCNN网络
为了提高效率,减少参数间的相互作用,采用简化的 PCNN 模型。如图1所示,简化 PCNN 的结构分为接收部分、调制部分和脉冲发生器 3 部分。其数学表达式为:
F
i
j
[
n
]
=
S
i
j
(1)
F_{ij}[n] = S_{ij} \tag{1}
Fij[n]=Sij(1)
F i j [ n ] = ∑ W i j k l Y k l [ n − 1 ] (2) F_{ij}[n] = \sum W_{ijkl}Y_{kl}[n-1] \tag{2} Fij[n]=∑WijklYkl[n−1](2)
θ i j [ n ] = e x p ( − α E ) θ i j [ n − 1 ] + V E Y i j [ n − 1 ] (3) \theta_{ij}[n] = exp(-\alpha_E)\theta_{ij}[n-1]+V_EY_{ij}[n-1] \tag{3} θij[n]=exp(−αE)θij[n−1]+VEYij[n−1](3)
Y i j [ n ] = { 1 , U i j [ n ] ≥ θ i j [ n ] 0 , U i j [ n ] < θ i j [ n ] (4) Y_{ij}[n] = \begin{cases} 1,U_{ij}[n]\geq \theta_{ij}[n]\\ 0,U_{ij}[n]<\theta_{ij}[n] \end{cases} \tag{4} Yij[n]={1,Uij[n]≥θij[n]0,Uij[n]<θij[n](4)
式中:
F
i
j
[
n
]
F_{ij}[n]
Fij[n]表示 PCNN 的输入;
S
i
j
[
n
]
S_{ij}[n]
Sij[n]是外部输入,比如一幅图像的所有像素点;
L
i
j
[
n
]
L_{ij}[n]
Lij[n]是连接输入;
U
i
j
[
n
]
U_{ij}[n]
Uij[n]是内部活动项,
θ
i
j
[
n
]
\theta_{ij}[n]
θij[n]表示动态阈值,
Y
i
j
[
n
]
Y_{ij}[n]
Yij[n]是神经网络的输出;
β
\beta
β是连接系数,
W
i
j
k
l
W_{ijkl}
Wijkl是连接矩阵;
α
E
\alpha_E
αE是阈值衰减系数,
V
E
V_E
VE 是阈值放大系数。通常
W
i
j
k
l
W_{ijkl}
Wijkl可以设置为:
W
i
j
k
l
=
[
0.707
1
0.707
1
0
1
0.707
1
0.707
]
(5)
W_{ijkl} = [\begin{matrix}0.707&1&0.707\\ 1&0&1\\ 0.707&1&0.707 \end{matrix}] \tag{5}
Wijkl=[0.70710.7071010.70710.707](5)
在这些参数中,对分割结果产生较大影响的主要有3个:连接系数
β
\beta
β、阈值衰减系数
α
E
\alpha_E
αE 、阈值放大系数
V
E
V_E
VE 。
3.蜣螂适应度函数设计
适应度函数作为优化算法中重要的一部分,影响着分割结果。熵能够反映目标包含的信息量的大小,熵越大,说明包含的信息量越大。因此,本文选取分割后图像的熵作为适应度函数,其公式为:
H
=
−
p
1
∗
l
o
g
2
p
1
−
p
0
∗
l
o
g
2
p
0
(6)
H =-p_1*log_2p_1 - p_0*log_2p_0 \tag{6}
H=−p1∗log2p1−p0∗log2p0(6)
式中:
p
1
p_1
p1是二值图像中 1 占整幅图像的比例;
p
0
p_0
p0 是二值图像中 0 占整幅图像的比例。
由于蜣螂优化算法为寻找最小值,于是添加负号,转换为选找最小值:
f
i
t
n
e
s
s
=
a
r
g
m
i
n
(
−
H
)
(7)
fitness = argmin(-H) \tag{7}
fitness=argmin(−H)(7)
3.实验结果
蜣螂参数设置如下:
3 个参数范围均设置为 0.001 ~200;
%% 蜣螂算法优化脉冲耦合神经网络的图像自动分割
%读取图像
I = imread('lena.jpg');
%将图像转换为灰度图
if(size(I,3)~=1)
Igray = rgb2gray(I);
else
Igray = I;
end
%对连接系数β、阈值衰减系数 αE 、阈值放大数 VE进行优化
%设置蜣螂算法参数
%参数范围均设置为 0.001-200
dim = 3;%维度,3维即优化的3个参数
lb = 0.001.*ones(1,dim); %下边界
ub = 200.*ones(1,dim); %上边界
pop = 20;%种群数量
Max_iteration = 20;%最大迭代次数
fobj = @(x) fun(x,Igray);%适应度函数
4.参考文献
[1]贾鹤鸣,康立飞,孙康健,彭晓旭,李瑶,姜子超.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割[J].应用科技,2019,46(04):16-20+25. (基本原理参考该文章)