如果只是单纯的写一个2048游戏,让这个游戏可以玩的话,工作量还是蛮小的。不过,在这写工作中,你可能花时间最多的就是数字的移动与合并的算法了,如果没有做过,可能确实要花点时间来构思,所以,写完2048游戏以后,我希望能把它做个记录。
移动与合并的算法
比如说我们有如下一个界面:
现在,玩家向左划,这个导致所有的数字向左移动,并且移动的过程中如果发生碰撞,会检查数字是不是可以合并。
我们的算法应该是通用的,不仅对于4*4模式,即便是针对3*3模式,n*n模式,它都应该是一样的。
那么怎么做呢?其实就两步:
第一步:把第一个空格和空格后面的第一个数字(如果有)交换。
第二步:交换后检查需不需要合并。
以此类推。
为了便于陈述,我们给图片做一个坐标:
在这张图片中,按照我们说的,第一个空白和第一个数字交换,也就是把(2,C)和(3,C)交换,交换后检查能不能合并,如果能则合并,不过不能则不合并,这里显然可以合并,所以我们把他们合并为4.然后空白后面就没有数字了,算法结束。
因此,我们的算法必须记录第一个空白的位置和第一个数字的位置,那么我们用k记录空白,用j记录第一个数字,然后对于每一行,从左向右做这样的事情。
直接上代码吧,结合代码一说就会明白:
首先,我们的一个数字使用一个Number类来表述:
public class Number {
public int mScores;
public int mCurPosition;
public int mBeforePosition;
public boolean isNeedMove;
public boolean isNeedCombine;
public Number(int position,int scores){
mScores = scores;
mCurPosition = mBeforePosition = position;
isNeedMove = false;
isNeedCombine = false;
}
public void reset(){
mScores = 0;
isNeedMove = false;
isNeedCombine = false;
}
}
可见一个Number中有scores,也就是分数,当前的位置和之前的位置是用来计算动画的,我们需要把一个Number从之前的位置移动到当前的位置。
然后整个游戏使用一个Numbers类来表述:
public class Numbers {
Number [][] mNumbers = new Number[Game2048StaticControl.gamePlayMode][Game2048StaticControl.gamePlayMode];
public Numbers(){
for(int i=0;i<Game2048StaticControl.gamePlayMode;i++){
for(int j=0;j<Game2048StaticControl.gamePlayMode;j++){
mNumbers[i][j] = new Number(0,0);
}
}
}
public Number getNumber(int x,int y){
return mNumbers[x][y];
}
public Number [][] getNumbers (){
return mNumbers;
}
public int getBlankCount(){
int count = 0;
for(int i=0;i<Game2048StaticControl.gamePlayMode;i++){
for(int j=0;j<Game2048StaticControl.gamePlayMode;j++){
if(mNumbers[i][j].mScores==0){
count++;
}
}
}
return count;
}
public int getPositonFromBlankCountTh(int blankTh){
int count = 0;
for(int i=0;i<Game2048StaticControl.gamePlayMode;i++){
for(int j=0;j<Game2048StaticControl.gamePlayMode;j++){
if(mNumbers[i][j].mScores==0){
if(count==blankTh){
return i*Game2048StaticControl.gamePlayMode+j;
}else {
count++;
}
}
}
}
return -1;
}
public void swapNumber(int position1,int position2){
mNumbers[position1/Game2048StaticControl.gamePlayMode][position1%Game2048StaticControl.gamePlayMode].mCurPosition = position2;
mNumbers[position1/Game2048StaticControl.gamePlayMode][position1%Game2048StaticControl.gamePlayMode].mBeforePosition = position1;
mNumbers[position2/Game2048StaticControl.gamePlayMode][position2%Game2048StaticControl.gamePlayMode].mCurPosition = position1;
mNumbers[position2/Game2048StaticControl.gamePlayMode][position2%Game2048StaticControl.gamePlayMode].mBeforePosition = position2;
Number tem = mNumbers[position1/Game2048StaticControl.gamePlayMode][position1%Game2048StaticControl.gamePlayMode];
mNumbers[position1/Game2048StaticControl.gamePlayMode][position1%Game2048StaticControl.gamePlayMode] = mNumbers[position2/Game2048StaticControl.gamePlayMode][position2%Game2048StaticControl.gamePlayMode];
mNumbers[position2/Game2048StaticControl.gamePlayMode][position2%Game2048StaticControl.gamePlayMode] = tem;
}
}
这个类的核心就是一个Number [n][n]的数组,n可以为任意值,因为我们的算法是通用的。
有了这个的概念以后,我们来看向左移动的算法,思想前面已经讲过了,直接看代码,结合代码非常容易理解。
//return 0:do nothing
//return 1:move
//return 2:combine
public int