系统稳定性判定分析(二)---- 线性定常系统状态方程稳定性判据与n阶常微分方程稳定性判据的等价性

n n n 阶线性齐次常微分方程与一阶常微分方程系统的等价转换

考虑如下 n n n 阶线性齐次常微分方程: a 0 x ( n ) + a 1 x ( n − 1 ) + … + a n − 1 x ( 1 ) + a n x = 0 , a 0 ≠ 0 , (1) a_0x^{(n)}+a_1x^{(n-1)}+\ldots+a_{n-1}x^{(1)}+a_nx=0, a_0\neq 0, \tag{1} a0x(n)+a1x(n1)++an1x(1)+anx=0,a0=0,(1)其中系数 a 0 , … , a n a_0, \ldots, a_n a0,,an 均为实数,则方程(1)可等价转换为如下 n n n维一阶系统 x ˙ = A x , (2) \dot{\pmb{x}}=A\pmb{x},\tag{2} x˙=Ax(2)其中 A A A 为系统(2)的系数矩阵,具有如下形式 A = [ 0 1 0 … 0 0 0 1 … 0 ⋮ ⋮ ⋮ ⋮ − a n a 0 − a n − 1 a 0 − a n − 2 a 0 … − a 1 a 0 ] . (3) A=\begin{bmatrix} 0&1&0&\ldots&0\\ 0&0&1&\ldots&0\\ \vdots&\vdots&\vdots& &\vdots\\ -\frac{a_n}{a_0}&-\frac{a_{n-1}}{a_0}&-\frac{a_{n-2}}{a_0}&\ldots&-\frac{a_1}{a_0} \end{bmatrix}.\tag{3} A= 00a0an10a0an101a0an200a0a1 .(3)转变过程如下:
       ~~~~~~        { x 1 = x x 2 = x ( 1 ) x 3 = x ( 2 ) ⋮ x n = x ( n − 1 ) (4) \begin{cases} x_1=x\\ x_2=x^{(1)}\\ x_3=x^{(2)}\\ \vdots\\ x_{n}=x^{(n-1)}\tag{4} \end{cases} x1=xx2=x(1)x3=x(2)xn=x(n1)(4)将方程(1)左右两边同除以 a 0 a_0 a0,移项可得 x ( n ) = − a n a 0 x − a n − 1 a 0 x ( 1 ) − … − a 1 a 0 x ( n − 1 ) , (5) x^{(n)}=-\frac{a_n}{a_0}x-\frac{a_{n-1}}{a_0}x^{(1)}-\ldots-\frac{a_1}{a_0}x^{(n-1)},\tag{5} x(n)=a0anxa0an1x(1)a0a1x(n1),(5)联立(4)和(5)可得 ( x ˙ 1 x ˙ 2 ⋮ x ˙ n − 1 x ˙ n ) = ( 0 1 0 … 0 0 0 1 … 0 ⋮ ⋮ ⋮ ⋮ − a n a 0 − a n − 1 a 0 − a n − 2 a 0 … − a 1 a 0 ) ( x 1 x 2 ⋮ x n − 1 x n ) , (6) \begin{pmatrix} \dot{x}_1\\ \dot{x}_2\\ \vdots\\ \dot{x}_{n-1}\\ \dot{x}_{n} \end{pmatrix}=\begin{pmatrix} 0&1&0&\ldots&0\\ 0&0&1&\ldots&0\\ \vdots&\vdots&\vdots& &\vdots\\ -\frac{a_n}{a_0}&-\frac{a_{n-1}}{a_0}&-\frac{a_{n-2}}{a_0}&\ldots&-\frac{a_1}{a_0} \end{pmatrix}\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_{n-1}\\ x_{n} \end{pmatrix},\tag{6} x˙1x˙2x˙n1x˙n = 00a0an10a0an101a0an200a0a1 x1x2xn1xn ,(6) x = ( x 1   x 2   …   x n ) T \pmb{x}=(x_1~ x_2~ \ldots~ x_n)^T x=(x1 x2  xn)T,则有系统(2)成立。

多项式的根与常系数矩阵特征值的关联

从上一节系统稳定性判定分析(一)---- 基于时域状态方程的常系数线性系统内部稳定性判定 可知,当线性时不变系统系数矩阵的特征值均具有负实部时,系统具有渐近稳定性,若该系统具有唯一平衡点,则系统最终收敛于该平衡点。在实际生活中,我们可以应用常微分方程描述事物的发展规律,分析事物的运动特性,为刻画事物之间的逻辑关系,通常可能会用到高阶常微分方程,事物的动力特性可以通过分析常微分方程的性质得以说明。
定义多项式 f ( λ ) = a 0 λ n + a 1 λ n − 1 + … + a n − 1 λ + a n , (7) f(\lambda)=a_0\lambda^n+a_1\lambda^{n-1}+\ldots+a_{n-1}\lambda+a_n,\tag{7} f(λ)=a0λn+a1λn1++an1λ+an,(7)根据常微分方程与常微分方程组的特征值解法总结笔记可以得知,方程 (1) 的特征方程即为 f ( λ ) = 0 f( \lambda)=0 f(λ)=0,通过求解上述多项式的根即可确定方程 (1) 解的形式。从系统稳定性角度,可有如下等价性成立:

性质 (3) 式中矩阵 A A A 的特征值与 (7) 式中多项式的根具有相同的取值。

证明. 如下应用数学归纳法进行证明。
(1) 对于1阶情况,即当 n = 1 n=1 n=1 时,此时 f ( λ ) = a 0 λ + a n f(\lambda)=a_0\lambda+a_n f(λ)=a0λ+an,多项式的根为 − a n / a 0 -a_n/a_0 an/a0。相应地,其对应的一阶系统的系数矩阵 A A A A 1 = [ − a n a 0 ] A_1 = [-\frac{a_n}{a_0}] A1=[a0an],经计算, A A A 的特征值亦为 − a n / a 0 -a_n/a_0 an/a0,上述性质满足。
(2) 假定当 n = k − 1 n = k-1 n=k1 时,上述性质满足,即有 d e t ( λ I k − 1 − A k − 1 ) = λ k − 1 + a 1 a 0 λ k − 2 + … + a k − 2 a 0 λ + a k − 1 a 0 . (8) det(\lambda I_{k-1}-A_{k-1})=\lambda^{k-1}+\frac{a_1}{a_0}\lambda^{k-2}+\ldots+\frac{a_{k-2}}{a_0}\lambda+\frac{a_{k-1}}{a_0}.\tag{8} det(λIk1Ak1)=λk1+a0a1λk2++a0ak2λ+a0ak1.(8)则当 n = k n=k n=k 时,方程 (1) 对应的 k k k 维状态方程的系数矩阵 A k A_k Ak A k = [ 0 1 0 … 0 0 0 1 … 0 ⋮ ⋮ ⋮ ⋮ − a k a 0 − a k − 1 a 0 − a k − 2 a 0 … − a 1 a 0 ] A_k=\begin{bmatrix} 0&1&0&\ldots&0\\ 0&0&1&\ldots&0\\ \vdots&\vdots&\vdots& &\vdots\\ -\frac{a_k}{a_0}&-\frac{a_{k-1}}{a_0}&-\frac{a_{k-2}}{a_0}&\ldots&-\frac{a_1}{a_0} \end{bmatrix} Ak= 00a0ak10a0ak101a0ak200a0a1 其特征行列式为 d e t ( λ I k − A k ) = ∣ λ − 1 0 … 0 0 λ − 1 … 0 ⋮ ⋮ ⋮ ⋮ a k a 0 a k − 1 a 0 a k − 2 a 0 … λ + a 1 a 0 ∣ det(\lambda I_k-A_k)= \left| \begin{array}{ccc} \lambda & -1 & 0 &\ldots&0 \\ 0 & \lambda & -1&\ldots&0\\ \vdots&\vdots&\vdots& &\vdots\\ \frac{a_k}{a_0} & \frac{a_{k-1}}{a_0} & \frac{a_{k-2}}{a_0}&\ldots&\lambda+\frac{a_1}{a_0} \end{array} \right| det(λIkAk)= λ0a0ak1λa0ak101a0ak200λ+a0a1
将上述行列式按第一列展开,可得:
d e t ( λ I k − A k ) = λ d e t ( λ I k − 1 − A k − 1 ) + ( − 1 ) 1 + k a k a 0 ( − 1 ) k − 1 = λ d e t ( λ I k − 1 − A k − 1 ) + a k a 0 , \begin{align*} det(\lambda I_k-A_k)&=\lambda det(\lambda I_{k-1}-A_{k-1})+(-1)^{1+k}\frac{a_k}{a_0} (-1)^{k-1}\\ &=\lambda det(\lambda I_{k-1}-A_{k-1})+\frac{a_k}{a_0} ,\tag{9} \end{align*} det(λIkAk)=λdet(λIk1Ak1)+(1)1+ka0ak(1)k1=λdet(λIk1Ak1)+a0ak,(9)将式 (8) 代入式 (9) 中可得
d e t ( λ I k − A k ) = λ d e t ( λ I k − 1 − A k − 1 ) + a k a 0 = λ ( λ k − 1 + a 1 a 0 λ k − 2 + … + a k − 2 a 0 λ + a k − 1 a 0 ) + a k a 0 = λ k + a 1 a 0 λ k − 1 + … + a k − 1 a 0 λ + a k a 0 , \begin{align*} det(\lambda I_k-A_k) &=\lambda det(\lambda I_{k-1}-A_{k-1})+\frac{a_k}{a_0} \\ &=\lambda (\lambda^{k-1}+\frac{a_1}{a_0}\lambda^{k-2}+\ldots+\frac{a_{k-2}}{a_0}\lambda+\frac{a_{k-1}}{a_0})+\frac{a_k}{a_0} \\ &=\lambda^{k}+\frac{a_1}{a_0}\lambda^{k-1}+\ldots+\frac{a_{k-1}}{a_0}\lambda+\frac{a_{k}}{a_0},\tag{10} \end{align*} det(λIkAk)=λdet(λIk1Ak1)+a0ak=λ(λk1+a0a1λk2++a0ak2λ+a0ak1)+a0ak=λk+a0a1λk1++a0ak1λ+a0ak,(10)(10) 式两侧同乘系数 a 0 a_0 a0即得 (7) 式,即当 n = k n=k n=k 时,上述性质成立。
因此,综上所述,(3) 式中矩阵 A A A 的特征值与 (7) 式中多项式的根具有相同的取值。

有关多项式得概念

(1)若 n n n 阶实系数多项式 f ( λ ) f(\lambda) f(λ)所有零点均具有负实部,则称该多项式是稳定的;
(2)若 n n n 阶实系数多项式 f ( λ ) f(\lambda) f(λ)所有零点中至少一个零点的实部为正,则称该多项式是不稳定的;
(3)若 n n n 阶实系数多项式 f ( λ ) f(\lambda) f(λ)既不是稳定的也不是不稳定的,则称其为临界的

一个稳定的多项式被称为Hurwitz多项式

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值