矿区自动驾驶是一类 典型的封闭场景自动驾驶系统,具备较高的商业落地可行性。其设计目标是在矿山运输作业中 替代人驾驶卡车,实现无人化作业,降低安全风险、提高作业效率、节省人力成本。
一、矿区自动驾驶的业务场景特点
特性 | 说明 |
---|
封闭道路 | 不与社会车辆混行,交通规则可控 |
固定路线 | 往返于装载点与卸载点,路线固定 |
低速重载 | 通常行驶速度较低,车辆载重高 |
恶劣环境 | 粉尘大、视野差、信号弱、路况起伏大 |
强任务调度 | 依赖指挥中心统一调度车辆作业任务 |
安全性高要求 | 卡车大,作业密集,对人车碰撞零容忍 |
二、系统架构与核心模块(矿区专属设计)
1. 感知系统
- 主要传感器:
- 激光雷达(LiDAR):构建3D点云地图,检测障碍物、坡度变化。
- 毫米波雷达:全天候障碍物检测。
- 摄像头:辅助识别人、标志、坑洼。
- RTK GPS + IMU:实现高精定位。
- 处理重点:
- 坡度识别(上下坡防侧翻)。
- 人车检测(防止撞到维修工人)。
- 落石、堆土检测。
2. 定位系统
- 方法:
- RTK GPS + IMU + 轮速计 融合,保障厘米级精度。
- 自建高精地图(车道、装卸点、避障区等)用于地图匹配定位。
- 考虑因素:
- 矿区易无信号 → 局部区域需使用 激光SLAM 补位定位。
3. 决策与规划系统
- 行为决策:
- “装载等待 → 装载完成 → 驶向卸货点 → 卸货 → 返回装载点”
- 特定区域自动换挡(上下坡)或切换动力模式。
- 路径规划:
- 调度协同(矿区特点):
- 后台调度系统统一管理所有车辆路径与作业任务,避免拥堵与冲突。
- 动态分配卸载区、路线优先级等。
4. 控制系统
- 横纵向控制:
- 低速精准控制(关键场景:靠近挖掘机装载、精准卸载入仓)。
- 自动换挡、坡道起步控制(重载上坡滑行、刹车补偿)。
- 控制接口:
- 控制系统可集成卡车厂商CAN总线系统、油门刹车控制器、方向控制模块。
三、典型数据处理链路(以“装载区检测障碍 → 停车避障”为例)
- 激光雷达数据 → 点云聚类算法(Euclidean Clustering)
- 目标识别分类:是否为人、石头、其他车(使用深度学习模型或规则引擎)
- 估算与预测:对静态/动态障碍物做速度与朝向估计
- 行为判断:前方障碍物 → 触发“停止 + 等待 + 上报调度”策略
- 调度系统响应:
- 若判断为长期障碍物(如堆土),分配新路线或派遣人工处理。
- 若为短时障碍(如另一个卡车装载中),设置等待状态,适时重新判断。
四、调度系统设计(与自动驾驶协同)
模块 | 功能 |
---|
任务调度模块 | 分配作业路线(A → B)、任务编号 |
车队管理模块 | 监控所有车辆状态(位置、油量、载重) |
作业点交互系统 | 与挖机、卸载平台协同(如装满信号) |
任务反馈模块 | 记录行驶时间、装卸次数、异常状态 |
五、矿区自动驾驶关键技术难点
问题 | 说明 | 解决方法 |
---|
粉尘遮挡 | 雷达/相机失效 | 选用高功率雷达、冗余传感器 |
GPS信号丢失 | 定位中断 | 融合IMU/LiDAR/视觉,构建局部地图 |
载重大 → 制动延迟 | 危险性高 | 强化路径预测、延时制动、下坡控制 |
人工干预场景多 | 比如维修、指挥工人靠近车辆 | 加装安全帽识别、热成像、人车语音警告 |
多车调度冲突 | 易拥堵、行驶不合理 | 结合全局调度系统+V2V通信协调避让 |
六、矿区无人车常用技术栈举例
模块 | 常用技术 |
---|
感知 | ROS + Apollo感知模块、PCL、OpenCV |
定位 | Cartographer、RTK-GNSS、LIO-SAM |
规划 | Hybrid A*、MPC、OpenPlanner |
控制 | PID、MPC、自研驱动器协议 |
仿真测试 | CARLA(修改矿区场景)、Gazebo、Cyber RT |
后台调度 | 自研调度平台 + V2X系统 |
七、代表性应用案例
- 华为+神州数码矿区解决方案:融合调度、车载控制、环境感知、数据闭环。
- 易控智驾、易成自动驾驶矿车:已在山西、内蒙古等露天煤矿落地运营。
- 百度Apollo矿山版本:Apollo Mining,实现多车协同与动态调度。