Transformer 架构 - 解码器 (Transformer Architecture - Decoder)

欢迎回到我们的 Transformer 系列教程!在上一篇中,我们详细探讨了 Transformer 的编码器,它负责将输入的源序列(比如源语言句子)转换为一系列包含丰富上下文信息的向量表示。

现在,我们将把目光投向 Transformer 的另一半——解码器 (Decoder)。解码器负责接收编码器的输出,并自回归地 (auto-regressively) 生成目标序列(比如目标语言句子)。这意味着它一次生成一个 token,并且在生成当前 token 时,只能依赖于已经生成的先前 token 以及编码器的输出。

本篇博客,我们将:

  • 理解 Transformer 解码器的整体结构。
  • 深入解码器层内部的三个关键子层。
  • 重点理解带掩码的多头自注意力编码器-解码器注意力(交叉注意力)的作用和原理。
  • 重温残差连接和层归一化。
  • 动手实践:实现一个简单的 Transformer 解码器层和完整的解码器。

让我们深入解码器的世界吧!


1. Transformer 解码器整体结构

Transformer 解码器同样由 N 个完全相同的解码器层 (Decoder Layer)</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值