树莓派使用Google Edge TPU加速模型推理(Coral USB Accelerator)

树莓派使用Google Edge TPU加速模型推理(Coral USB Accelerator)

在这里插入图片描述

第一部分 树莓派网络环境配置

第二部分 安装Edge TPU 库

2.1 安装Edge TPU runtime

  1. 增加Debian包仓库
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list

curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -

sudo apt-get update
  1. 安装Edge TPU runtime
sudo apt-get install libedgetpu1-std
  1. 把USB加速器连接到终端的usb3.0接口

2.2 安装PyCoral library

If you’re using Debian-based Linux system (including a Raspberry Pi), install PyCoral as follows:

sudo apt-get install python3-pycoral

第三部分 Edge TPU测试

  1. 下载代码
mkdir coral && cd coral

git clone https://github.com/google-coral/pycoral.git

cd pycoral
  1. 下载模型、标签、图片等
bash examples/install_requirements.sh classify_image.py
  1. 推理
python3 examples/classify_image.py \
--model test_data/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite \
--labels test_data/inat_bird_labels.txt \
--input test_data/parrot.jpg

在这里插入图片描述

  1. 如果没有问题,会打印如下信息
----INFERENCE TIME----
Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.
11.8ms
3.0ms
2.8ms
2.9ms
2.9ms
-------RESULTS--------
Ara macao (Scarlet Macaw): 0.75781
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值