大模型的微调-自我认知训练

XTuner 认知微调

1. 训练步骤

  • 安装conda 环境
  • 安装 XTuner 框架,这里通过源码安装
  • 准备模型
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b
  • 准备数据

[
    {"conversation": [{"input": "请介绍一下你自己", "output": "我是海绵没有宝宝的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦"}]},
    {"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助海绵没有宝宝完成XTuner微调个人小助手的任务"}]},
]
  • 准备微调配置脚本,并调整相应的配置(数据目录,模型目录)
xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
  • 微调
xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py
  • 格式转bin
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1` && MKL_SERVICE_FORCE_INTEL=1 MKL_THREADING_LAYER=GNU xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf
  • 模型合并
MKL_SERVICE_FORCE_INTEL=1 MKL_THREADING_LAYER=GNU xtuner convert merge /root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB
  • web 部署
pip install streamlit==1.36.0
streamlit run xtuner_streamlit_demo.py

2. 训练后

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一宸哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值