目标检测小结

除了从backbone,neck,head,loss以及数据预处理上理解整个架构,还要从最核心的正负样本定义,匹配上理解,这块分两部分,一是anchor-based的,一是anchor-free方法。此外从最顶层可能要理解一下one-stage和two-stage,目前来看,two-stage的算法已经很少了,主要就是one-stage中的anchor-free和anchor-based的理解。

正负样本分配上,anchor-based的包括anchor生成,AnchorGenerator,anchor-free包括PointGenerator,生成anchor之后,存在要把gt和anchor的框架进行约束的bbox coder,编码到0-1空间后,如何匹配呢?涉及到核心的Assigner,Assigner包括MaxIoUAssigner等等,正负样本分配之后,涉及到如何采样,sampler,采样之后的样本才是真正的样本,之后在送入到loss中计算。

在loss层面,主要包括cls和bbox的分支loss,除此之外,不同的网络对bbox的回归的方式不同,有采用4点,有回归分布的,有回归wh的,另外还有考量边界框置信度,框回归质量的centerness等,对于cls的分类,目前主流的就是focalloss以及fl的改进型号,比如gaussianfocalloss,quiltyfocalloss和ghmc等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值