Theorem 1: H-S transform in real domain (scalar)
e x 2 = η 2 π ∫ exp ( − η 2 z 2 + 2 η x z ) d z , ∀ x , η e^{x^2}=\sqrt{\frac{\eta}{2\pi}}\int \exp \left({-\frac{\eta}{2}z^2+\sqrt{2\eta}xz}\right)\text{d}z, \quad \forall x,\eta ex2=2πη∫exp(−2ηz2+2ηxz)dz,∀x,η p r o o f proof proof: Given the Gaussian distribution N ( x ∣ 2 η z , 1 η ) \mathcal{N}(x|\sqrt{\frac{2}{\eta}}z,\frac{1}{\eta}) N(x∣η2z,η1), we have following formula , thanks to the normalization of PDF,
∫ η 2 π exp [ − η 2 ( x − 2 η z ) 2 ] d x = 1 \int \sqrt{\frac{\eta}{2\pi}}\exp \left[-\frac{\eta}{2}(x-\sqrt{\frac{2}{\eta}}z)^2\right]\text{d}x=1 ∫2πηexp[−2η(x−η2z)2
Hubbard-Stratonovich Transform
最新推荐文章于 2021-03-18 16:11:26 发布
本文介绍了Hubbard-Stratonovich变换在实域中的几个定理,包括标量情况的变换公式,利用高斯分布的归一化性质推导证明,以及向量情况的变换。这些定理展示了如何通过变换来表达不同形式的指数函数。
摘要由CSDN通过智能技术生成