Hubbard-Stratonovich Transform

本文介绍了Hubbard-Stratonovich变换在实域中的几个定理,包括标量情况的变换公式,利用高斯分布的归一化性质推导证明,以及向量情况的变换。这些定理展示了如何通过变换来表达不同形式的指数函数。
摘要由CSDN通过智能技术生成

Theorem 1: H-S transform in real domain (scalar)
e x 2 = η 2 π ∫ exp ⁡ ( − η 2 z 2 + 2 η x z ) d z , ∀ x , η e^{x^2}=\sqrt{\frac{\eta}{2\pi}}\int \exp \left({-\frac{\eta}{2}z^2+\sqrt{2\eta}xz}\right)\text{d}z, \quad \forall x,\eta ex2=2πη exp(2ηz2+2η xz)dz,x,η p r o o f proof proof: Given the Gaussian distribution N ( x ∣ 2 η z , 1 η ) \mathcal{N}(x|\sqrt{\frac{2}{\eta}}z,\frac{1}{\eta}) N(xη2 z,η1), we have following formula , thanks to the normalization of PDF,
∫ η 2 π exp ⁡ [ − η 2 ( x − 2 η z ) 2 ] d x = 1 \int \sqrt{\frac{\eta}{2\pi}}\exp \left[-\frac{\eta}{2}(x-\sqrt{\frac{2}{\eta}}z)^2\right]\text{d}x=1 2πη exp[2η(xη2 z)2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值