机制设计专栏(3)-组合拍卖简介

一,何为组合拍卖

组合拍卖属于多物品拍卖领域,其应用领域非常广泛,例如FCC的频谱拍卖,路线规划,网路选优等等。问题描述为,有m件不可分割的待售物品要分给n个bidder,每个bidder对这些物品中的一个子集s有估值vi(s)(这个vi是从属于bidder i的估价函数).问题是如何分配这些物品。我们说的一个分配(s1,s2,...,sn)是指任意两个不同的分配子集交集为空。
首先看看这个简单的问题所遇到的困难:1,计算上困难,分配问题属于NPC;2,估值函数表达困难,每一个bidder要对2^m次方个子集进行估值计算;3,策略性行为分析困难。

二,一些简单情况下的组合拍卖

我们首先考察最简单的情况(single-minded case),每个bidder只对某一个子集S*感兴趣,他对包含子集S*的集合S的估值唯一常数,v(S)=v*,对其他子集估值为0.对于每一个bidder,其估值可表达为(S*,v*).就算是这种简单的情况,也面临着分配计算上的困难。
一般对于这种NPC问题,我们接下来有这么几种解决办法:找近似算法,找special case,或者用启发式算法解决。
看来近似算法还不错,不过 :not only is it known that finding the maximum independent set is NPC, but it is known that approximating it to with a factor of m^(1-w)(for any fixed w>0) is NPC.因此有如下命题:
也就是说我们可以用多项式时间来近似的极限为上述命题中的结果。
special case呢,接下来的两个special cases可以被有效的解决,一个是bidder对物品需求最多2个,这种情况也是看作是一种weighted matching problem;另一种是"linear order"case,就是说我们首先把物品排好位置,bidder只要这种排好序的物品中的连续部分,this case可以通过动态规划有效的解决。
这个问题实质上是一种有限制的整数规划问题,目前精确算法有分支定界和割平面法或者两者的混合算法等。
我们说一个机制是computationally efficient如果分配计算和支付函数计算都在 多项式时间内完成。对于一个机制来说我们最重要的是要求这个机制是IC的。我们知道VCG具有非常良好的性质,因此我们自然而然的想到用VCG机制来设计如何,首先如果分配计算和payment计算我们认为不是问题的话,那么当然VCG是最佳选择;如果计算有问题的话,要怎么解决,利用近似算法+VCG机制?不过如果我们利用了近似算法来处理最优分配的话,在利用VCG进行payment支付,这种VCG-based的机制看起来不错,不过,很遗憾,这样的机制 不能保证一定是IC的了。VCG-based 支付当且仅当通过分配规则分配后的社会福利是最优的时候才是IC的(至少在一个分配的子集上最优)。下面我们来说说这个问题。
首先对VCG-based进行一个明确的定义(一下内容参见Computationally Feasible VCG Mechanism,Noam Nisan, Amir Ronen):
显然基于最优分配算法的VCG-based mechanism就是VCG mechanism。来一个重要的有关子集的定义:

这里定义了在一个子空间中的最优分配,比如机制的分配规则为把所有的物品分配给对这些物品出价最高的那个bidder(注意到这里的子空间 V' 就变为了一个M维空间了,而全空间是2^M维度)。利用这种分配方式,显然计算效率满足了,而且还能保证这种分配结果不会比最优分配的1/n或者1/|S|差。(n代表bidder数目),有了上面的定义,我们给出一个直观的命题。
我们可以进一步压缩这个子空间,使得 结论仍然不变。
由上面我们可以得到一个有用的推论。
这个推论把原始算法与一种 最大化g的算法联系起来了。
虽然VCG-based机制满足了IC但是如果这是个一般的VCG-based mechanism(即不是最优的VCG mechanism)那么这种机制存在一个很严重的问题:not reasonable。这里的reasonable是指如果某一个人需要 某个物品(注意是指一个),但是其他所有人都对这个物品 都不感兴趣,那么这个物品应该分给需要的那个人。not reasonable就是这个物品不会分给那个人。(所以说“不合理”)。

由上可知,满足一定条件(maximal in its range)的VCG-based可以满足IC。当然了不是VCG-based 但满足IC的机制也是存在的,比如greedy mechanism。

下面给出算法流程:


二,Winner Determination --LRP方法

首先 给出一个结论: 如果瓦尔拉斯均衡存在,那么有效分配问题能在多项式下被解决。
由于赢家决定问题是整数规划问题,属于NPC(证明是构造出一个常见的NP问题“weighted-packing” problem,可由独立点集问题化简得到)的。对于整数规划问题,常见的精确算法有分支定界法(branch and bound),割平面法(cutting planes),混合法(brand and cut)等,Logistics.com 的 OptiBid 软件可用于12-350个bidder 和每个bidder上报500-10000个物品组合的情况,SAITECH-INC的SBID可解决的规模和Optibid差不多,CPLEX也很强大(参考Combinatorial Auction:A Survey Sevn de Vries, Rakesh V. Vohra, ,目前在更新“ http://joc.pubs.informs.org/OnlineSupplements.html”)。要进行精确求解,如果不加限制的话,利用计算机处理起来几乎是不可能的(毕竟NPC)。因此近似算法就变得很有用了,我们可以利用Relaxation技术来求得optimal solution的upper bound,LRP一般有两种方式,Largrangean relaxation 和 linear relaxation;很多算法首先都是基于分析LRP而给出的,而在求解LRP问题时常用的如单纯性,但是单纯性被证明是“坏”算法,因此又产生了多项式算法的椭球法(O(n^6))和kamarka(O(n^3.5))算法等,不过虽然椭球法基本上不实用,
  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值