蛋白序列 | 基于深度学习的蛋白质序列家族分类

39 篇文章 51 订阅
28 篇文章 11 订阅

背景简介

蛋白质数据集来自于结构生物信息学研究协作组织(RCSB)的蛋白质数据库(PDB)。

RCSB :  Research Collaboratory for Structural Bioinformatics

PDB :  Protein Data Bank

PDB是原子坐标和描述蛋白质和其他重要生物大分子的信息储存库。结构生物学家使用诸如X射线晶体学、NMR和低温电子显微术的方法来确定分子中每个原子的相对于彼此的位置。

不断发展的PDB反映了世界各地实验室正在进行的研究,使得在研究和教育中使用数据库既令人兴奋又具有挑战性。结构可用于生命过程中涉及的许多蛋白质和核酸,因此可以访问PDB数据库查找核糖体、癌基因、药物靶标甚至整个病毒的结构。但是,找到所需信息可能是一项挑战,因为PDB会存在许多不同的结构,经常发现给定分子或部分结构的多种结构,或已经从其天然形式修饰或失活的结构。

蛋白质序列家族分类

根据氨基酸序列对蛋白质家族进行分类。 工作基于自然语言处理(NLP)中深度学习模型,并假设蛋白质序列可以被视为一种语言。 


#import library

import numpy as np
import pandas as pd

from keras.models import Sequential
from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten,AtrousConvolution1D,SpatialDropout1D, Dropout
from keras.layers.normalization import BatchNormalization

from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.callbacks import EarlyStopping
from keras.preprocessing import text, sequence
from keras.preprocessing.text import Tokenizer
from sklearn.model_selection import train_test_split

%matplotlib inline
# Merge the two Data set together
# Drop duplicates
df = pd.read_csv('pdbdata_no_dups.csv').merge(pd.read_csv('pdbdata_seq.csv'), how='inner', on='structureId').drop_duplicates(["sequence"]) # ,"classification"
# Drop rows with missing labels
df = df[[type(c) == type('') for c in df.classification.values]]
df = df[[type(c) == type('') for c in df.sequence.values]]
# select proteins
df = df[df.macromoleculeType_x == 'Protein']
df.reset_index()
print(df.shape)
df.head()
(87761, 18)

print(df.residueCount_x.quantile(0.9))
df.residueCount_x.describe()
count     87761.000000
mean        922.913937
std        3173.118920
min           3.000000
25%         234.000000
50%         451.000000
75%         880.000000
max      157478.000000
Name: residueCount_x, dtype: float64
df = df.loc[df.residueCount_x<1200]
print(df.shape[0])
df.residueCount_x.describe()
count    73140.000000
mean       433.599918
std        289.671609
min          3.000000
25%        198.000000
50%        373.000000
75%        618.000000
max       1198.000000
Name: residueCount_x, dtype: float64

EDA

import matplotlib.pyplot as plt
from collections import Counter

# count numbers of instances per class
cnt = Counter(df.classification)
# select only K most common classes! - was 10 by default
top_classes = 10
# sort classes
sorted_classes = cnt.most_common()[:top_classes]
classes = [c[0] for c in sorted_classes]
counts = [c[1] for c in sorted_classes]
print("at least " + str(counts[-1]) + " instances per class")

# apply to dataframe
print(str(df.shape[0]) + " instances before")
df = df[[c in classes for c in df.classification]]
print(str(df.shape[0]) + " instances after")

seqs = df.sequence.values
lengths = [len(s) for s in seqs]

# visualize
fig, axarr = plt.subplots(1,2, figsize=(20,5))
axarr[0].bar(range(len(classes)), counts)
plt.sca(axarr[0])
plt.xticks(range(len(classes)), classes, rotation='vertical')
axarr[0].set_ylabel('frequency')

axarr[1].hist(lengths, bins=50, normed=False)
axarr[1].set_xlabel('sequence length')
axarr[1].set_ylabel('# sequences')
plt.show()

转换标签

 

首先,数据集被简化为十个最常见类之一的样本。 序列的长度范围从极少数氨基酸到几千个氨基酸。

其次,使用sklearn.preprocessing中的LabelBinarizer将字符串中的标签转换为一个one hot表示。

from sklearn.preprocessing import LabelBinarizer

# Transform labels to one-hot
lb = LabelBinarizer()
Y = lb.fit_transform(df.classification)

用keras进一步预处理序列

使用keras库进行文本处理:

Tokenizer:将序列的每个字符转换为数字
pad_sequences:确保每个序列具有相同的长度(max_length)。
train_test_split:将数据分成训练和测试样本。

# maximum length of sequence, everything afterwards is discarded! Default 256
# max_length = 256
max_length = 300

#create and fit tokenizer
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts(seqs)
#represent input data as word rank number sequences
X = tokenizer.texts_to_sequences(seqs)
X = sequence.pad_sequences(X, maxlen=max_length)

建立keras模型并适合

NLP中取得的成功建议使用已经实现为keras层(嵌入)的字嵌入。本例中,只有20个不同的单词(每个氨基酸)。可以尝试对序列的one hot表示进行2D卷积,而不是单词嵌入,但是这种方法侧重于将NLP理论应用于蛋白质序列。

为了提高性能,还可以使用深层体系结构(后续的卷积和池化层),这里有两层,其中第一层有64个滤波器,卷积大小为6,第二层有32个滤波器,大小为3。
将激活平展并传递到完全相同的层,其中最后一层是softmax激活,并且大小对应于类的数量。

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=.2)
embedding_dim = 11 # orig 8

# create the model
model = Sequential()
model.add(Embedding(len(tokenizer.word_index)+1, embedding_dim, input_length=max_length))
# model.add(Conv1D(filters=64, kernel_size=6, padding='same', activation='relu')) #orig
model.add(Conv1D(filters=128, kernel_size=9, padding='valid', activation='relu',dilation_rate=1))
# model.add(BatchNormalization())
model.add(MaxPooling1D(pool_size=2))
# model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')) # orig
model.add(Conv1D(filters=64, kernel_size=4, padding='valid', activation='relu')) 
model.add(BatchNormalization())
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(200, activation='elu')) # 128
# model.add(BatchNormalization())
# model.add(Dense(64, activation='elu')) # 128
model.add(BatchNormalization())
model.add(Dense(top_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())

es = EarlyStopping(monitor='val_acc', verbose=1, patience=4)

model.fit(X_train, y_train,  batch_size=128, verbose=1, validation_split=0.15,callbacks=[es],epochs=25) # epochs=15, # batch_size=128

from keras.layers import Conv1D, MaxPooling1D, Concatenate, Input
from keras.models import Sequential,Model

units = 256
num_filters = 32
filter_sizes=(3,5, 9,15,21)
conv_blocks = []

embedding_layer = Embedding(len(tokenizer.word_index)+1, embedding_dim, input_length=max_length)
es2 = EarlyStopping(monitor='val_acc', verbose=1, patience=4)

sequence_input = Input(shape=(max_length,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)

z = Dropout(0.1)(embedded_sequences)

for sz in filter_sizes:
    conv = Conv1D(
        filters=num_filters,
        kernel_size=sz,
        padding="valid",
        activation="relu",
        strides=1)(z)
    conv = MaxPooling1D(pool_size=2)(conv)
    conv = Flatten()(conv)
    conv_blocks.append(conv)
z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
z = Dropout(0.25)(z)
z = BatchNormalization()(z)
z = Dense(units, activation="relu")(z)
z = BatchNormalization()(z)
predictions = Dense(top_classes, activation="softmax")(z)
model2 = Model(sequence_input, predictions)
model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model2.summary())

model2.fit(X_train, y_train,  batch_size=64, verbose=1, validation_split=0.15,callbacks=[es],epochs=30)

from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
import itertools

train_pred = model.predict(X_train)
test_pred = model.predict(X_test)
print("train-acc = " + str(accuracy_score(np.argmax(y_train, axis=1), np.argmax(train_pred, axis=1))))
print("test-acc = " + str(accuracy_score(np.argmax(y_test, axis=1), np.argmax(test_pred, axis=1))))

# Compute confusion matrix
cm = confusion_matrix(np.argmax(y_test, axis=1), np.argmax(test_pred, axis=1))

# Plot normalized confusion matrix
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
np.set_printoptions(precision=2)
plt.figure(figsize=(10,10))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix')
plt.colorbar()
tick_marks = np.arange(len(lb.classes_))
plt.xticks(tick_marks, lb.classes_, rotation=90)
plt.yticks(tick_marks, lb.classes_)
#for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
#    plt.text(j, i, format(cm[i, j], '.2f'), horizontalalignment="center", color="white" if cm[i, j] > cm.max() / 2. else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

print(classification_report(np.argmax(y_test, axis=1), np.argmax(test_pred, axis=1), target_names=lb.classes_))

train_pred = model2.predict(X_train)
test_pred = model2.predict(X_test)
print("train-acc = " + str(accuracy_score(np.argmax(y_train, axis=1), np.argmax(train_pred, axis=1))))
print("test-acc = " + str(accuracy_score(np.argmax(y_test, axis=1), np.argmax(test_pred, axis=1))))

# Compute confusion matrix
cm = confusion_matrix(np.argmax(y_test, axis=1), np.argmax(test_pred, axis=1))

# Plot normalized confusion matrix
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
np.set_printoptions(precision=2)
plt.figure(figsize=(10,10))
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix')
plt.colorbar()
tick_marks = np.arange(len(lb.classes_))
plt.xticks(tick_marks, lb.classes_, rotation=90)
plt.yticks(tick_marks, lb.classes_)
#for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
#    plt.text(j, i, format(cm[i, j], '.2f'), horizontalalignment="center", color="white" if cm[i, j] > cm.max() / 2. else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

print(classification_report(np.argmax(y_test, axis=1), np.argmax(test_pred, axis=1), target_names=lb.classes_))


参考资料:

1. https://www.rcsb.org

2. https://www.kaggle.com

 

  • 5
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值