softmax loss 交叉熵损失函数求导

6 篇文章 2 订阅

1. softmax 函数求导

求导之前我们先了解softmax 函数,softmax一般是用来作为网络的输出层,直接输出概率信息,定义如下:

\large S_i = \frac{e^{a_i}}{\sum_{j}e^{a_j}}

那么我们对softmax 函数S_i 进行求导,为了简洁把求和里面的一大堆用\small \sum 简写:

\large \frac{\partial S_i}{\partial a_j} = \frac{\frac{\partial e^{a_i}}{\partial a_j}\sum - e^{a_i} \frac{\partial \sum }{\partial a_j}}{\sum ^2}

①当 i = j 时:

\large \frac{\partial S_i}{\partial a_j} = \frac{e^{a_i}\sum - e^{a_i}e^{a_j}}{\sum ^2} = \frac{e^{a_i}}{\sum }\cdot \frac{\sum - e^{a_j}}{\sum } = S_i(1-S_j)

②当 i ≠ j 时:

\large \frac{\partial S_i}{\partial a_j} = \frac{-e^{a_i}e^{a_j}}{\sum ^2} = -S_i\cdot S_j

 

2. softmax loss 求导

好了,有了前面这些知识之后我们开始求导。这个函数最要是用来计算分类的loss的,我们训练模型时就要计算loss,再来求导进行反向传播,这也是写本文的目的。先看定义:

\large L = -\sum y_i\, log(S_i)

公式中log的底数为e,就是ln了;\large y_i取0或1,表示当训练时\large y_i的输出为第i类时,\large y_i = 1,为其他类别时\large y_i = 0;

\large \frac{\partial L}{\partial S_i} = -y_i\, \frac{1}{S_i}

 

对所有像素求导:

\large \frac{\partial L}{\partial a_i} = \sum \frac{\partial L}{\partial S_j} \cdot \frac{\partial S_j}{\partial a_i} = \frac{\partial L}{\partial S_i} \cdot \frac{\partial S_i}{\partial a_i} + \sum_{i\neq j}\frac{\partial L}{\partial S_j} \cdot \frac{\partial S_j}{\partial a_i}  

\large = -\frac{y_i}{S_i}\, S_i(1-S_i) + \sum_{i\neq j}(-\frac{y_j}{S_j})(-1)S_iS_j

\large = y_i(S_j - 1) + \sum_{i\neq j}y_jS_i

我们把这两种情况分开写,得到:

\large \frac{\partial L}{\partial a_i} = \begin{cases} S_j-1 & \text{ if } i=j \\ S_i & \text{ else } \end{cases}

 


参考资料:

https://blog.csdn.net/grllery/article/details/97788745

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
深度学习中,交叉熵损失函数常用于多分类问题中衡量模型输出与真实标签之间的差异。对于使用softmax作为激活函数的输出层,我们可以使用交叉熵损失函数进行优化。 设模型的输出为$y=(y_1,y_2,\dots,y_n)$,其中$y_i$表示模型对第$i$类的预测概率。设真实标签为$z=(z_1,z_2,\dots,z_n)$,其中$z_i$表示第$i$类的真实标签(通常取值为0或1)。 交叉熵损失函数定义如下: $$L(y,z)=-\sum_{i=1}^n z_i \log(y_i)$$ 接下来,我们来求解交叉熵对每个预测值的导数。 计算$L$对$y_k$的偏导数: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} \sum_{i=1}^n z_i \log(y_i)$$ 由于交叉熵对于除$y_k$以外的其他预测值$y_i$的偏导数为0(可以通过计算验证),因此只需计算$L$对$y_k$的偏导数。 我们可以使用链式法则来进行求导: $$\frac{\partial L}{\partial y_k} = -\sum_{i=1}^n \frac{\partial}{\partial y_k} (z_i \log(y_i))$$ 当$i\neq k$时,$\frac{\partial}{\partial y_k}(z_i \log(y_i))=0$,因此上式可以简化为: $$\frac{\partial L}{\partial y_k} = -\frac{\partial}{\partial y_k} (z_k \log(y_k)) = -\frac{z_k}{y_k}$$ 综上所述,我们得到交叉熵损失函数对于softmax模型输出的偏导数为: $$\frac{\partial L}{\partial y_k} = \begin{cases} y_k-z_k, & \text{if $k=j$}\\ y_k, & \text{if $k\neq j$} \end{cases}$$ 其中$j$表示真实标签为1的类别。这样,我们就可以利用该导数来进行反向传播,更新模型参数,从而优化模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liguiyuan112

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值