GenAI开源公司汇总

本文汇总了人工智能领域的开源公司,涵盖基础模型提供、模型部署、开发者工具、模型训练和监控服务,全面展示了AI生态的关键组成部分。
摘要由CSDN通过智能技术生成

主要分类如下:

1. 基础模型:这些是机器学习和AI的核心模型提供商,它们提供基础的算法和技术支持。

2. 模型部署与推断:提供云服务和计算资源,帮助用户部署和运行AI模型。

3. 开发者工具:支持AI/ML的开发过程,包括数据处理和实验管理等。

4. 模型训练与微调:提供服务的公司专注于机器学习和AI模型的训练和微调。

5. 监控与可观察性:用于跟踪和管理ML/AI系统的性能。

OpenVINO是Intel开源人工智能框架,它提供了一套工具和库,使得开发者能够高效地将模型部署到各种硬件平台上,包括CPU、GPU、FPGA和Myriad VPU等。GenAI是Intel针对其平台优化的一系列预训练模型集,它包含了经过调整和优化的模型,可以快速应用于各种AI应用,如计算机视觉、语音识别等。 使用OpenVINO和GenAI一般分为以下几个步骤: 1. **下载和安装**:首先从Intel官网下载最新版本的OpenVINO Toolkit,包括Model Optimizer工具,用于将模型转换为OpenVINO兼容的IR(Intermediate Representation)格式。 2. **获取模型**:访问GenAI模型仓库,选择适合自己应用场景的预训练模型。这些模型通常提供了TensorFlow、Keras或其他标准格式,你需要用Model Optimizer将其转换为OpenVINO IR。 3. **模型转换**:使用Model Optimizer将下载的模型转换为`.xml`和`.bin`文件,这是OpenVINO运行所需的基本文件。 4. **配置环境**:设置OpenVINO环境变量,并配置好推理引擎(Inference Engine),如C++ API或Python API。 5. **加载和使用模型**:通过API(如C++的`ie::Core`或Python的`openvino.inference_engine.IECore`)加载模型,并进行实时推理或批量推理。 6. **性能优化**:利用OpenVINO提供的工具分析性能瓶颈,调整输入数据格式和尺寸,以获得更好的性能。 7. **部署应用**:将优化后的模型集成到实际应用中,比如摄像头应用、服务器端服务等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值