腾讯混元视频大模型再进化!HunyuanVideo-I2V重磅开源:高精度图生视频+自定义特效生成

划重点
❶ 支持720P高清视频生成,最长5秒(129帧)流畅动态
❷ 首创图像语义深度理解技术,视频衔接自然无跳帧
❸ 开放LoRA微调接口,可定制"头发生长"等创意特效
❹ 单卡80G显存即可运行,开源模型+训练代码全公开
(GitHub地址:https://github.com/Tencent/HunyuanVideo-I2V)


🔥 技术革新:图像秒变高清视频

腾讯AI实验室最新开源的HunyuanVideo-I2V模型,基于此前大获成功的HunyuanVideo视频生成框架升级而来。该模型突破性地实现了:

  • 720P高清输出:在单卡80G显存环境下即可生成1280×720分辨率视频
  • 超长时序建模:支持最长5秒(129帧)连续画面生成,动作过渡自然流畅
  • 多模态深度理解:通过Decoder-Only架构的多模态大语言模型(MLLM
### 生成视频的大规模模型 #### 主流模型概述 当前,在生成视频领域,扩散模型成为主流技术之一。这类模型通过迭代去噪过程从噪声中逐步构建出完整的视频内容[^3]。 #### AI框架与开源项目 1. **DALLE-2** DALLE-2 是由 OpenAI 开发的一个强大的多模态生成模型,不仅擅长于静态片的生成,还支持基于给定的一系列帧创建连贯的动画或短视频片段。尽管官方并未完全开放源码,社区内存在多个仿制版本可供探索和实验。 2. **Make-A-Video** Make-A-Video 是 Meta 发布的一款专注于将单张或多张静止像转换成动态影像的产品级解决方案。该工具利用先进的神经网络结构实现了高质量的视频合成,并且已经部分开源,允许开发者在其基础上进一步开发应用。 3. **Phenaki** Phenaki 作为另一个值得关注的研究成果,它能够在仅提供少量指导性提示的情况下生成逼真的连续动作场景。此项目的独特之处在于其对于复杂时空关系的有效建模以及较低的数据需求特性,使得即使是在资源有限环境下也能高效运行。 4. **Text-to-video diffusion models (TVDiff)** TVDiff 提供了一种全新的视角来看待文本到视频的任务转化流程。不同于传统方法侧重于先生成中间表示再映射至目标域的方式,TVDiff 将整个过程视为一个端到端的学习问题,从而简化了设计思路并提高了最终产出的质量。 ```python import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained('model_name') video_frames = pipeline(prompt="描述文字").frames ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值