阿里与北邮联合研发的FantasyTalking项目,突破了传统视频生成技术的维度限制,构建了首个支持全尺度人体姿态、多物种对象的动态视频生成框架。这项技术通过建立跨尺度的运动表征空间,实现了从微表情到全身运动的连贯控制,标志着生成式AI在动态视觉内容创作领域迈入了新纪元。
一、跨尺度运动建模的技术革新
传统视频生成技术受限于固定的空间分辨率与时间一致性约束,难以兼顾不同景别的动态特征表达。FantasyTalking通过层级式运动表征架构,将面部微运动、肢体运动与整体位移分解为三个独立的控制维度:
-
微运动编码器:采用3D形变模型捕捉面部52个关键肌肉群的运动参数,通过LSTM网络建模表情迁移的动态轨迹,解决了传统方法中表情僵化的问题。实验数据显示,该方法在FACS(面部动作编码系统)评估中达到94.7%的动作准确率。
-
肢体运动预测模块:创新性地引入逆运动学约束的对抗生成网络,将关节旋转角度与空间位移解耦处理。在CMU运动捕捉数据集上的测试表明,该方法在保持物理合理性的同时,运动自然度评分提升37%。