视频地址:
XTuner 大模型单卡低成本微调实战_哔哩哔哩_bilibili
MarkDown:
https://github.com/InternLM/tutorial/blob/main/xtuner/README.md
1.Finetune简介
LLM的下游应用中,增量预训练和指令跟随是经常会用到两种的微调模式
1.1 增量预训练微调
使用场景:让基座模型学习到一些新知识,如某个垂类领域的常识 训练数据:文章、书籍、代码等
1.2 指令跟随微调
使用场景:让模型学会对话模板,根据人类指令进行对话 训练数据:高质量的对话、问答数据
1.3 LoRA & QLoRA
2.XTuner介绍
- 功能亮点
- 母适配多种生态
- 多种微调算法 多种微调策略与算法,覆盖各类SFT场景
- 适配多种开源生态 支持加载HuggingFace、ModelScope模型或数据集
- 自动优化加速 开发者无需关注复杂的显存优化与计算加速细节
- 适配多种硬件
- 训练方案覆盖NVIDIA20系以上所有显卡
- 最低只需8GB显存即可微调7B模型
- 母适配多种生态
2.1 快速上手
自定义微调
2.2 XTuner数据引擎
3.8GB 显卡玩转LLM
4.动手实践
4.1微调环境准备
# InternStudio 平台中,从本地 clone 一个已有 pytorch 2.0.1 的环境(后续均在该环境执行,若为其他环境可作为参考)
# 进入环境后首先 bash
# 进入环境后首先 bash
# 进入环境后首先 bash
bash
conda create --name personal_assistant --clone=/root/share/conda_envs/internlm-base
# 如果在其他平台:
# conda create --name personal_assistant python=3.10 -y
# 激活环境
conda activate personal_assistant
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
# personal_assistant用于存放本教程所使用的东西
mkdir /root/personal_assistant && cd /root/personal_assistant
mkdir /root/personal_assistant/xtuner019 && cd /root/personal_assistant/xtuner019
# 拉取 0.1.9 的版本源码
git clone -b v0.1.9 https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.9 https://gitee.com/Internlm/xtuner
# 进入源码目录
cd xtuner
# 从源码安装 XTuner
pip install -e '.[all]'
4.2数据准备
- 创建data文件夹用于存放用于训练的数据集
mkdir -p /root/personal_assistant/data && cd /root/personal_assistant/data
- 生成数据集
4.3配置准备
- 下载模型InternLM-chat-7B
mkdir -p /root/personal_assistant/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/personal_assistant/model/Shanghai_AI_Laboratory
- 创建用于存放配置的文件夹config并进入
#创建用于存放配置的文件夹config并进入
mkdir /root/personal_assistant/config && cd /root/personal_assistant/config
- 拷贝一个配置文件到当前目录:xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH} 在本例中:(注意最后有个英文句号,代表复制到当前路径)
xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .
- 修改拷贝后的文件internlm_chat_7b_qlora_oasst1_e3_copy.py
4.4微调启动
- 用xtuner train命令启动训练、
xtuner train /root/personal_assistant/config/internlm_chat_7b_qlora_oasst1_e3_copy.py
# 若要开启 deepspeed 加速,增加 --deepspeed deepspeed_zero2 即可
4.5微调后参数转换/合并
- 训练后的pth格式参数转Hugging Face格式
# 创建用于存放Hugging Face格式参数的hf文件夹
mkdir /root/personal_assistant/config/work_dirs/hf
export MKL_SERVICE_FORCE_INTEL=1
# 配置文件存放的位置
export CONFIG_NAME_OR_PATH=/root/personal_assistant/config/internlm_chat_7b_qlora_oasst1_e3_copy.py
# 模型训练后得到的pth格式参数存放的位置
export PTH=/root/personal_assistant/config/work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth
# pth文件转换为Hugging Face格式后参数存放的位置
export SAVE_PATH=/root/personal_assistant/config/work_dirs/hf
# 执行参数转换
xtuner convert pth_to_hf $CONFIG_NAME_OR_PATH $PTH $SAVE_PATH
- Merge模型参数
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER='GNU'
# 原始模型参数存放的位置
export NAME_OR_PATH_TO_LLM=/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b
# Hugging Face格式参数存放的位置
export NAME_OR_PATH_TO_ADAPTER=/root/personal_assistant/config/work_dirs/hf
# 最终Merge后的参数存放的位置
mkdir /root/personal_assistant/config/work_dirs/hf_merge
export SAVE_PATH=/root/personal_assistant/config/work_dirs/hf_merge
# 执行参数Merge
xtuner convert merge \
$NAME_OR_PATH_TO_LLM \
$NAME_OR_PATH_TO_ADAPTER \
$SAVE_PATH \
--max-shard-size 2GB
4.6网页DEMO
- 安装网页Demo所需依赖
pip install streamlit==1.24.0
- 下载InternLM项目代码
# 创建code文件夹用于存放InternLM项目代码
mkdir /root/personal_assistant/code && cd /root/personal_assistant/code
git clone https://github.com/InternLM/InternLM.git
-
将 /root/code/InternLM/web_demo.py 中 29 行和 33 行的模型路径更换为Merge后存放参数的路径 /root/personal_assistant/config/work_dirs/hf_merge
-
SSH连接后
streamlit run /root/personal_assistant/code/InternLM/web_demo.py --server.address 127.0.0.1 --server.port 6006
- 在本地浏览器输入 http://127.0.0.1:6006
float16加载测试
4bits量化
基础作业
**微调结果