本次讲师是一位从事算法工作的优秀贡献者。
一起来看看吧!
本次课程内容主要有:
我将在此整理前三节的内容,第四节放在作业章节进行讲解:
同第三节的建立数据库中所提及到的,如果通用大模型在专用领域表现能力不强,如何改进——
建立知识库或者微调,本节课进行的则是微调。
构建角色和对话模板,这项工作由Xtuner做过了,可以借此一键完成。
在预测阶段,这个不同角色模型的对话模板,两种模型的格式有所区别:
指令微调采用一问一答的方式进行:
下面还有增量微调:
其训练的数据是陈述句,然后将前两个角色内容留空,仍然是计算Assiant部分的损失。
LoRA的原理是在线性层平行增加一个两个小层的分支,因而能够减少训练的耗费。
有三种微调的方式,后二者是Xtuner提供的:
第三者在显存和GPU之间进行了一个整合,如果GPU满会到显存里面跑,速度会慢一些。
Xtuner为书生浦语提供的微调框架:
其能支持的模型的硬件资源比较广泛
并且在不同的卡上能够减少资源消耗:
今天的课程就到此为止,觉得有用的话点赞收藏加关注哦!
欢迎关注无神,一起学大模型和AI方面的前沿知识!