深度特征工程:[google]DCN-M: Improved Deep & Cross Network for Feature Cross Learning in Web-scale Learning

本文介绍了DCN-M,一种改进的深度和交叉网络模型,用于更有效地学习高阶特征交叉。DCN-M通过矩阵形式的权重和低秩矩阵分解来增强表示能力,降低了计算复杂度。实验表明,DCN-M能够更好地拟合高阶特征,并且在捕获重要特征交叉方面表现出优势。
摘要由CSDN通过智能技术生成

参考:https://mp.weixin.qq.com/s/0qidwbxyfTkODTw2DIiRWw
代码

1、贡献
DNN在特征交叉学习上比较低效,DCN[1]可以高效的学习高阶的特征交叉,本文在DCN的基础上,提出一种改良版的DCN-M模型。

2、回顾DCN的结构
在这里插入图片描述
图中输入包括连续特征和向量, 模型分两支,一是DNN模型,一是Cross Net,最终两者的输出concat一起经过FFN输出。
CrossNet的公式如下:
在这里插入图片描述
公式的矩阵显示是:
在这里插入图片描述
式中w和b都是d维向量,因此每增加一层增加2d个参数,参数相比DNN很少。

3、DCN-M的改进点

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值