参考:https://mp.weixin.qq.com/s/0qidwbxyfTkODTw2DIiRWw
代码
1、贡献
DNN在特征交叉学习上比较低效,DCN[1]可以高效的学习高阶的特征交叉,本文在DCN的基础上,提出一种改良版的DCN-M模型。
2、回顾DCN的结构
图中输入包括连续特征和向量, 模型分两支,一是DNN模型,一是Cross Net,最终两者的输出concat一起经过FFN输出。
CrossNet的公式如下:
公式的矩阵显示是:
式中w和b都是d维向量,因此每增加一层增加2d个参数,参数相比DNN很少。
3、DCN-M的改进点