【论文阅读】车道线特征操作

1. SCNN

这里的SCNN是指Spatial CNN,Spatial SCNN 本身是一个插件,或者从网络结构上来说可以算是一种neck,其本身一般接在主干网络的后面,主要是对主干网络处理出来的feature map进行一个处理。
下图即为处理的方式,从图中可以清晰的看到,SCNN从四个方向上对feature map进行了处理。表面上看上去是对特征进行了投影,实际上是将某个方向上的特征通过一维卷积的方式进行处理,和下一层特征进行加和。其实,SCNN网络本质上是在feature map层级的一种RNN处理,将H或者W方向上的信息通过卷积和激活函数作为历史信息传递给下一层,使得特征层在各个方向上都具有记忆性。
在这里插入图片描述
从特征处理代码中我们也可以看到这种信息的处理,SCNN本身对车道线分割处理的结果优化提升是比较明显的,究其原理,还是特征本身实现了对空间的记忆性,换句话说,特征通过这种方式增强了全局信息的感知,同时这种全局的感知又带有记忆特性,越近的特征影响越显著。
在这里插入图片描述
但这种处理带了的问题也是很明显的,把SCNN当成一个算子的话,该算子本身的并行度是不高的,连续4个for循环去遍历feature map, 虽然feature map不大,但是推理起来仍然要慢很多。

2. RESA

官方资料

https://arxiv.org/abs/2008.13719
https://github.com/ZJULearning/resa

RESA: Recurrent Feature-Shift Aggregator 没错,当你看到这个名字的时候,你一定怀疑为什么他不叫RFSA,我也不懂了,为什么能从Recurrent里面提取RE出来,那RNN是不是应该也叫RENN。
Anyway, 看完这个名字其实可以基本猜出来,这个处理和SCNN的想法差不多。但是相比SCNN那张图,你会明显看到有stride变化,up方向的stride为1,down方向的stride为2。然后你会发现有一条虚线,像是负反馈,这是告诉你他实际上不只跑了一次,stride为2的那个方向甚至每一次处理的初始位置还有区别。综上所述,RESA实际上是SCNN的进化版,他对特征的提取更加的复杂
在这里插入图片描述
当你去读RESA的论文的时候,你就回发现它其实和SCNN讲了两件事情,SCNN告诉我们把一层特征经过卷积+激活,然后加给下一层,同过RNN方式实现空间的记忆,思路很好,但是处理很慢。
RESA在做什么,他其实就是看到了SCNN处理的速度很慢,所以在优化特征计算,在RESA眼里特征并不一定要在空间上实现RNN的操作,空间和时间是不一样的,完全可以把无序的特征加进来,这样就可以整个方向一起操作一次计算即可,例如原来的顺序是12345,那54321加进来是不是也是一种特征的叠加,下一次31524加进来,重复几次,对于每一层来说是不是也叠加了更多的信息,虽然不是连续的信息,但是对于每一层来说都获得了很多层的信息,而且这样处理起来单个方向处理复杂度大大降低。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值