浮点数在内存中的存储机制和整型数不同,其有舍入误差,在计算机中用近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学记数法。所以浮点数在运算过程中通常伴随着因为无法精确表示而进行的近似或舍入。但是这种设计的好处是可以在固定的长度上存储更大范围的数。
1、将字符串转换为float、double过程存在精度损失,只是float、double各自损失的精度不相同而已
2、将float、double转换为字符过程中可能存在精度损失,但是通过%.8lf可以规避
(1)float小数点前后加起来有效数字只有6位。当给定的float有效数在6位以内转换为字符不会丢失精度,当有效位数大于6位就会存在精度丢失
3、浮点数比较
用"=="来比较两个double应该相等的类型,返回真值完全是不确定的。计算机对浮点数的进行计算的原理是只保证必要精度内正确即可。
我们在判断浮点数相等时,推荐用范围来确定,若x在某一范围内,我们就认为相等,至于范围怎么定义,要看实际情况而已了,float,和double 各有不同
也可以 abs(x) <= EPSINON
比如要判断浮点数floatA和B是否相等,我们先令float x = A – B ;
并设const float EPSINON = 0.00001; 则
if ((x >= - EPSINON)&& (x <= EPSINON);//或者if(abs(x) <= EPSINON)
cout<<”A 与B相等<<endl;
else
cout<<”不相等”<<endl;
根据上面分析建议在系统开发过程中设计到字符转换建议采用double类型,精度设置为%.8lf即可,在比较浮点数十建议EPSINON= 0.00000001