VLM 系列——RAM(recognize anything)—— 项目使用——调整阈值(获得置信度)

37 篇文章 17 订阅 ¥89.90 ¥99.00
本文介绍了如何在VLM的RAM项目中调整阈值以优化识别的置信度。主要涉及修改阈值文件和ram.py代码,关注的阈值集中在0.65、0.8和0.9。通过调整这些参数,可以提升计算机视觉模型的识别准确性。
摘要由CSDN通过智能技术生成
    原始代码并不会输出得分,而是根据各个属性的阈值判别大于阈值(不同的子类不同)的为命中,输出对应的属性。因此需要修改代码实现。

    默认阈值分布如下图,主要几种在0.65,还有两个高频阈值0.8和0.9。

    

1、修改阈值文件

找到需要输出得分的类目,并且将对应的阈值文件对应的类目阈值修改为0.0 (建议备份改文件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ*

你点滴支持,我持续创作,羞羞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值