【小呆的力学笔记】弹塑性力学的初步认知五:初始屈服条件(2)

3.4 典型屈服条件一:Tresca屈服(剪切屈服)

在讨论Tresca屈服条件前,我们需要先讨论用主应力表示最大剪切应力。

这里引入前文中的一个主剪应力的结论,即
主应力空间中主剪应力为
1 2 ∣ σ 1 − σ 2 ∣ , 1 2 ∣ σ 1 − σ 3 ∣ , 1 2 ∣ σ 2 − σ 3 ∣ \frac{1}{2}|\sigma_1-\sigma_2|,\frac{1}{2}|\sigma_1-\sigma_3|,\frac{1}{2}|\sigma_2-\sigma_3| 21σ1σ2,21σ1σ3,21σ2σ3
并且与主应力平面夹45°。
如果规定 σ 1 ≥ σ 2 ≥ σ 3 \sigma_1\ge\sigma_2\ge\sigma_3 σ1σ2σ3,那么最大剪切应力为
τ m a x = σ 1 − σ 3 2 (12) \tau_{max}=\frac{\sigma_1-\sigma_3}{2}\tag{12} τmax=2σ1σ3(12)

在上一章中某应力状态点 P ( σ 1 , σ 2 , σ 3 ) P(\sigma_1,\sigma_2,\sigma_3) P(σ1,σ2,σ3)分解到 π \pi π平面的 O Q → \overrightarrow{OQ} OQ 如下图所示。
在这里插入图片描述
( 图 1 应力分解图 ) (图1\quad 应力分解图) (1应力分解图)

π \pi π平面中建立 x − y x-y xy坐标系,如下图所示(具体过程见上一章),那么 O Q → \overrightarrow{OQ} OQ x x x坐标如下所示
x = 2 2 ( σ 1 − σ 3 ) = 2 τ m a x (13) x=\frac{\sqrt2}{2}(\sigma_1-\sigma_3)=\sqrt{2}\tau_{max}\tag{13} x=22 (σ1σ3)=2 τmax(13)
在这里插入图片描述
(图 2 基向量投影 图 3 π 平面中基向量投影) (图2\quad 基向量投影\quad\quad\quad\quad图3\quad \pi平面中基向量投影) (图2基向量投影3π平面中基向量投影)

Tresca屈服条件:当最大剪应力达到极限 k 1 k_1 k1,材料就进入屈服,其实就是材料力学第三强度理论。

τ m a x ≥ k 1 , 塑性 τ m a x < k 1 , 弹性 (14) \tau_{max}\ge k_1,\quad 塑性\\ \tau_{max}\lt k_1,\quad 弹性\tag{14} τmaxk1,塑性τmax<k1,弹性(14)

那么材料的屈服条件 f ( σ i j ) = 0 f(\sigma_{ij})=0 f(σij)=0就可以具体化为
σ 1 − σ 3 2 = 1 2 x = k 1 (15) \frac{\sigma_1-\sigma_3}{2}=\frac{1}{\sqrt2}x=k_1\tag{15} 2σ1σ3=2 1x=k1(15)
即在 σ 1 ≥ σ 2 ≥ σ 3 \sigma_1\ge\sigma_2\ge\sigma_3 σ1σ2σ3象限中,初始屈服曲线为直线 x = 2 k x=\sqrt2 k x=2 k,同理可以得到其他五个象限的初始屈服曲线,汇总起来如下式
σ 1 − σ 3 = 2 k 1 , σ 1 ≥ σ 2 ≥ σ 3 σ 1 − σ 3 = − 2 k 1 , σ 3 ≥ σ 2 ≥ σ 1 σ 2 − σ 3 = 2 k 1 , σ 2 ≥ σ 1 ≥ σ 3 σ 2 − σ 3 = − 2 k 1 , σ 3 ≥ σ 1 ≥ σ 2 σ 1 − σ 2 = 2 k 1 , σ 1 ≥ σ 3 ≥ σ 2 σ 1 − σ 2 = − 2 k 1 , σ 2 ≥ σ 3 ≥ σ 1 (16) \sigma_1-\sigma_3=2k_1,\quad \sigma_1\ge\sigma_2\ge\sigma_3\\ \sigma_1-\sigma_3=-2k_1,\quad \sigma_3\ge\sigma_2\ge\sigma_1\\ \sigma_2-\sigma_3=2k_1,\quad \sigma_2\ge\sigma_1\ge\sigma_3\\ \sigma_2-\sigma_3=-2k_1,\quad \sigma_3\ge\sigma_1\ge\sigma_2\\ \sigma_1-\sigma_2=2k_1,\quad \sigma_1\ge\sigma_3\ge\sigma_2\\ \sigma_1-\sigma_2=-2k_1,\quad \sigma_2\ge\sigma_3\ge\sigma_1\tag{16} σ1σ3=2k1,σ1σ2σ3σ1σ3=2k1,σ3σ2σ1σ2σ3=2k1,σ2σ1σ3σ2σ3=2k1,σ3σ1σ2σ1σ2=2k1,σ1σ3σ2σ1σ2=2k1,σ2σ3σ1(16)
绘制图形如下图5,不难发现其为一个正六边形。
其中 k 1 k_1 k1通过材料的拉伸试验确定,即在材料的简单拉伸试验中有
σ 1 = σ s , σ 2 = σ 3 = 0 \sigma_1=\sigma_s,\sigma_2=\sigma_3=0 σ1=σs,σ2=σ3=0
其中 σ s \sigma_s σs为简单拉伸试验中的屈服强度,将其代入式(16),有 k 1 = σ s 2 k_1=\frac{\sigma_s}{2} k1=2σs
那么式(16)就成为
σ 1 − σ 3 = ± σ s , σ 2 为中间主应力 σ 2 − σ 3 = ± σ s , σ 1 为中间主应力   σ 1 − σ 2 = ± σ s , σ 3 为中间主应力 (17) \begin{aligned} \sigma_1-\sigma_3=\pm\sigma_s,\quad \sigma_2为中间主应力\\ \sigma_2-\sigma_3=\pm\sigma_s,\quad \sigma_1为中间主应力\\\ \sigma_1-\sigma_2=\pm\sigma_s,\quad \sigma_3为中间主应力\\ \end{aligned}\tag{17} σ1σ3=±σs,σ2为中间主应力σ2σ3=±σs,σ1为中间主应力 σ1σ2=±σs,σ3为中间主应力(17)
同时,对于纯剪切的试验,有
σ 2 = 0 , τ s = 1 2 ( σ 1 − σ 3 ) \sigma_2=0,\tau_s=\frac{1}{2}(\sigma_1-\sigma_3) σ2=0,τs=21(σ1σ3)
那么,有
σ s = 2 τ s (18) \sigma_s=2\tau_s\tag{18} σs=2τs(18)
即拉伸屈服是剪切屈服的两倍。

在这里插入图片描述
图 5 初始屈服曲线 图5\quad 初始屈服曲线 5初始屈服曲线
上式表明Tresca屈服条件所形成屈服曲线在 π \pi π平面上(主应力空间中)是线性的,但是在主应力未知时,其屈服曲线形式相对复杂。
当主应力 σ i \sigma_i σi已知时,那么有偏应力主值为 s i s_i si,那么显然有下式成立,
s 1 − s 3 = σ 1 − σ 3 = 2 x 2 s 2 − s 1 − s 3 = 2 σ 2 − σ 1 − σ 3 = 6 y s 1 + s 2 + s 3 = 0 ⇒ s 1 = 2 2 x − 6 6 y s 2 = 6 3 y s 3 = − 2 2 x − 6 6 y (19) \begin{aligned} &s_1-s_3=\sigma_1-\sigma_3=\sqrt2x\\ &2s_2-s_1-s_3=2\sigma_2-\sigma_1-\sigma_3=\sqrt6y\\ &s_1+s_2+s_3=0 \end{aligned}\Rightarrow \begin{aligned} &s_1=\frac{\sqrt2}{2}x-\frac{\sqrt6}{6}y\\ &s_2=\frac{\sqrt6}{3}y\\ &s_3=-\frac{\sqrt2}{2}x-\frac{\sqrt6}{6}y \end{aligned}\tag{19} s1s3=σ1σ3=2 x2s2s1s3=2σ2σ1σ3=6 ys1+s2+s3=0s1=22 x66 ys2=36 ys3=22 x66 y(19)
如果按极坐标的表示方法, s i s_i si可以表示成下式
s 1 = 2 3 r sin ⁡ ( θ + 2 π 3 ) s 2 = 2 3 r sin ⁡ θ s 3 = 2 3 r sin ⁡ ( θ − 2 π 3 ) (20) \begin{aligned} &s_1=\sqrt\frac{2}{3}r\sin(\theta+\frac{2\pi}{3})\\ &s_2=\sqrt\frac{2}{3}r\sin\theta\\ &s_3=\sqrt\frac{2}{3}r\sin(\theta-\frac{2\pi}{3}) \end{aligned}\tag{20} s1=32 rsin(θ+32π)s2=32 rsinθs3=32 rsin(θ32π)(20)
把上式代入 J 3 J_3 J3
J 3 = s 1 s 2 s 3 = ( 2 3 ) 3 2 r 3 sin ⁡ θ sin ⁡ ( θ + 2 π 3 ) sin ⁡ ( θ − 2 π 3 ) = ( 2 3 ) 3 2 r 3 sin ⁡ θ ( sin ⁡ 2 θ − 3 4 ) = − ( 2 3 ) 3 2 r 3 4 sin ⁡ 3 θ = − ( 4 3 J 2 ) 3 2 sin ⁡ 3 θ 4 (21) \begin{aligned} J_3&=s_1s_2s_3\\ &=(\frac{2}{3})^{\frac{3}{2}}r^3\sin\theta\sin(\theta+\frac{2\pi}{3})\sin(\theta-\frac{2\pi}{3})\\ &=(\frac{2}{3})^{\frac{3}{2}}r^3\sin\theta(\sin^2\theta-\frac{3}{4})\\ &=-(\frac{2}{3})^{\frac{3}{2}}\frac{r^3}{4}\sin{3\theta}\\ &=-(\frac{4}{3}J_2)^{\frac{3}{2}}\frac{\sin{3\theta}}{4} \end{aligned}\tag{21} J3=s1s2s3=(32)23r3sinθsin(θ+32π)sin(θ32π)=(32)23r3sinθ(sin2θ43)=(32)234r3sin3θ=(34J2)234sin3θ(21)
那么
θ = 1 3 sin ⁡ − 1 [ − 3 3 J 3 2 ( J 2 ) 3 2 ] (22) \theta = \frac{1}{3}\sin^{-1}[\frac{-3\sqrt3J_3}{2(J_2)^{\frac{3}{2}}}]\tag{22} θ=31sin1[2(J2)2333 J3](22)
代入式(19),那么
σ 1 − σ 3 = s 1 − s 3 = 2 x = 2 r cos ⁡ θ = 2 2 J 2 cos ⁡ θ = 2 J 2 cos ⁡ θ = 2 k 1 (23) \sigma_1-\sigma_3=s_1-s_3=\sqrt2x=\sqrt2r\cos\theta=\sqrt2\sqrt{2J_2}\cos\theta=2\sqrt{J_2}\cos\theta=2k_1\tag{23} σ1σ3=s1s3=2 x=2 rcosθ=2 2J2 cosθ=2J2 cosθ=2k1(23)
此处用到 r = 2 J 2 r=\sqrt{2J_2} r=2J2 (详见上一章节)。

那么写成 f ( σ i j ) = 0 f(\sigma_{ij})=0 f(σij)=0,那么
J 2 cos ⁡ θ / k 1 − 1 = 0 (24) \sqrt{J_2}\cos\theta/k_1-1=0\tag{24} J2 cosθ/k11=0(24)
其中 θ \theta θ为式(22),那么屈服方程式中仅包含应力不变量 J 2 、 J 3 J_2、J_3 J2J3,所以当主应力未知时也适用。

3.5 典型屈服条件二:Mises屈服(剪切应变能)

一点的应力张量 σ i j \sigma_{ij} σij和应变张量 ε i j \varepsilon_{ij} εij分别为
σ i j = s i j + σ m δ i j ε i j = e i j + ε m δ i j (25) \sigma_{ij}=s_{ij}+\sigma_m\delta_{ij}\\ \varepsilon_{ij}=e_{ij}+\varepsilon_m\delta_{ij}\tag{25} σij=sij+σmδijεij=eij+εmδij(25)
材料在变形过程中,单位变形能为 ∫ ε σ i j d ε i j \int_{\varepsilon}\sigma_{ij}d\varepsilon_{ij} εσijdεij。当材料在线弹性阶段,将上式(25)代入,单位变形能为
∫ ε σ i j d ε i j = 1 2 σ i j ε i j = 1 2 ( s i j + σ m δ i j ) ( e i j + ε m δ i j ) = 1 2 ( s i j e i j + σ m δ i j e i j + s i j ε m δ i j + σ m δ i j ε m δ i j ) = 1 2 ( s i j e i j + σ m δ i j e i j ‾ ↓ 0 + ε m s i j δ i j ‾ ↓ 0 + σ m ε m δ i j δ i j ‾ ↓ 3 ) = 1 2 ( s i j e i j + 3 σ m ε m ) (26) \begin{aligned} \int_{\varepsilon}\sigma_{ij}d\varepsilon_{ij}&=\frac{1}{2}\sigma_{ij}\varepsilon_{ij}\\ &=\frac{1}{2}(s_{ij}+\sigma_m\delta_{ij})(e_{ij}+\varepsilon_m\delta_{ij})\\ &=\frac{1}{2}(s_{ij}e_{ij}+\sigma_m\delta_{ij}e_{ij}+s_{ij}\varepsilon_m\delta_{ij}+\sigma_m\delta_{ij}\varepsilon_m\delta_{ij})\\ &=\frac{1}{2}(s_{ij}e_{ij}+ \sigma_m\mathop{ \underline{\delta_{ij}e_{ij}} }\limits_{\mathop{ \downarrow}\limits_{\mathop{ }\limits_{0}}}+ \varepsilon_m\mathop{ \underline{s_{ij}\delta_{ij}} }\limits_{\mathop{ \downarrow}\limits_{\mathop{ }\limits_{0}}}+\sigma_m\varepsilon_m\mathop{ \underline{\delta_{ij}\delta_{ij}} }\limits_{\mathop{ \downarrow}\limits_{\mathop{ }\limits_{3}}})\\ &=\frac{1}{2}(s_{ij}e_{ij}+3\sigma_m\varepsilon_m) \end{aligned}\tag{26} εσijdεij=21σijεij=21(sij+σmδij)(eij+εmδij)=21(sijeij+σmδijeij+sijεmδij+σmδijεmδij)=21(sijeij+σm0δijeij+εm0sijδij+σmεm3δijδij)=21(sijeij+3σmεm)(26)
在材料为线弹性阶段,有(具体参见广义胡克定律章节)
e i j = 1 2 G s i j (27) e_{ij}=\frac{1}{2G}s_{ij}\tag{27} eij=2G1sij(27)
将上式代入式中,
∫ ε σ i j d ε i j = 1 2 s i j e i j + 3 2 σ m ε m = 1 2 s i j ⋅ 1 2 G s i j + 3 2 σ m ε m = 1 2 G ⋅ J 2 + 3 2 σ m ε m (28) \begin{aligned} \int_{\varepsilon}\sigma_{ij}d\varepsilon_{ij}&=\frac{1}{2}s_{ij}e_{ij}+\frac{3}{2}\sigma_m\varepsilon_m\\ &=\frac{1}{2}s_{ij}\cdot \frac{1}{2G}s_{ij}+\frac{3}{2}\sigma_m\varepsilon_m\\ &= \frac{1}{2G}\cdot J_2+\frac{3}{2}\sigma_m\varepsilon_m \end{aligned}\tag{28} εσijdεij=21sijeij+23σmεm=21sij2G1sij+23σmεm=2G1J2+23σmεm(28)

Mise认为当剪切应变能达到一定的极限,材料发生塑性变形,那么材料屈服的条件就变成 J 2 J_2 J2达到一定的极限。

那么,可以假设 f ( σ i j ) = 0 f(\sigma_{ij})=0 f(σij)=0具有如下形式
f ( σ i j ) = J 2 − k 2 2 = 0 (29) f(\sigma_{ij})=J_2-k_2^2=0\tag{29} f(σij)=J2k22=0(29)
同样 k 2 k_2 k2通过材料的拉伸试验确定,即在材料的简单拉伸试验中有
σ 1 = σ s , σ 2 = σ 3 = 0 \sigma_1=\sigma_s,\sigma_2=\sigma_3=0 σ1=σs,σ2=σ3=0
其中 σ s \sigma_s σs为简单拉伸试验中的屈服强度,将其代入式(29),那么有

J 2 − k 2 2 = 1 6 [ ( σ 1 − σ 2 ) 2 + ( σ 1 − σ 3 ) 2 + ( σ 2 − σ 3 ) 2 ] − k 2 2 = 1 3 σ s 2 − k 2 2 = 0 (30) \begin{aligned} J_2-k_2^2&=\frac{1}{6}[(\sigma_1-\sigma_2)^2+(\sigma_1-\sigma_3)^2+(\sigma_2-\sigma_3)^2]-k_2^2\\ &=\frac{1}{3}\sigma_s^2-k_2^2\\ &=0\end{aligned}\tag{30} J2k22=61[(σ1σ2)2+(σ1σ3)2+(σ2σ3)2]k22=31σs2k22=0(30)
因此,有 k 2 = σ s 3 k_2=\frac{\sigma_s}{\sqrt3} k2=3 σs,那么式(29)就成为
f ( σ i j ) = J 2 − σ s 2 3 = 0 (31) \begin{aligned} f(\sigma_{ij})=J_2-\frac{\sigma_s^2}{3}=0 \end{aligned}\tag{31} f(σij)=J23σs2=0(31)
同时,对于纯剪切的试验,有
σ 2 = 0 , τ s = 1 2 ( σ 1 − σ 3 ) , 且 σ 1 + σ 3 = 0 \sigma_2=0,\tau_s=\frac{1}{2}(\sigma_1-\sigma_3),且\sigma_1+\sigma_3=0 σ2=0,τs=21(σ1σ3),σ1+σ3=0
σ 1 = − σ 3 = τ s \sigma_1=-\sigma_3=\tau_s σ1=σ3=τs
那么,有
σ s = 3 τ s (32) \sigma_s=\sqrt3\tau_s\tag{32} σs=3 τs(32)
即材料拉伸屈服等于剪切屈服的 3 \sqrt3 3 倍。
同时,由式(31),可以得到等效应力的表达式 σ ‾ = 3 J 2 \overline\sigma=\sqrt{3J_2} σ=3J2 ,那么式(31)变为

f ( σ i j ) = σ ‾ 2 3 − σ s 2 3 = 0 (33) \begin{aligned} f(\sigma_{ij})=\frac{\overline\sigma^2}{3}-\frac{\sigma_s^2}{3}=0 \end{aligned}\tag{33} f(σij)=3σ23σs2=0(33)
σ ‾ > 0 , σ s > 0 \overline\sigma\gt 0,\sigma_s\gt 0 σ>0,σs>0,那么式(33)另一种常用形式为 σ ‾ − σ s = 0 \overline\sigma-\sigma_s=0 σσs=0
即只要等效应力达到屈服强度,该点应力状态进入塑性。

3.6* 典型屈服条件三:最大偏应力屈服条件

当材料正应力达到极限时材料就会失效,即最大正应力理论或最大第一强度理论,这对于脆性材料能够适用。对于一般的塑性金属材料来说,静水压力对材料的塑性无影响,那么自然而然能够想到最大正应力理论的修正版,即当材料的最大偏应力达到极限时材料就会失效。

最大偏应力的屈服条件可以写成如下形式:
max ⁡ ( ∣ s 1 ∣ , ∣ s 2 ∣ , ∣ s 3 ∣ ) = k 3 (34) \max(|s_1|,|s_2|,|s_3|)=k_3\tag{34} max(s1,s2,s3)=k3(34)
其中 s i s_i si为偏应力张量的主值。
这里需要引入前文中证明过的一个结论(在应力不变量章节中)
s i + σ m = σ i (35) s_i+\sigma_m=\sigma_i\tag{35} si+σm=σi(35)
那么上式就可以化为
3 s 1 = 3 ( σ 1 − σ m ) = 3 σ 1 − ( σ 1 + σ 2 + σ 3 ) = 2 σ 1 − ( σ 2 + σ 3 ) (36) 3s_1=3(\sigma_1-\sigma_m)=3\sigma_1-(\sigma_1+\sigma_2+\sigma_3)=2\sigma_1-(\sigma_2+\sigma_3)\tag{36} 3s1=3(σ1σm)=3σ1(σ1+σ2+σ3)=2σ1(σ2+σ3)(36)
同样
3 s 2 = 2 σ 2 − ( σ 1 + σ 3 ) 3 s 3 = 2 σ 3 − ( σ 1 + σ 2 ) (37) 3s_2=2\sigma_2-(\sigma_1+\sigma_3)\\3s_3=2\sigma_3-(\sigma_1+\sigma_2)\tag{37} 3s2=2σ2(σ1+σ3)3s3=2σ3(σ1+σ2)(37)

同样 k 3 k_3 k3通过材料的拉伸试验确定,即在材料的简单拉伸试验中有
σ 1 = σ s , σ 2 = σ 3 = 0 \sigma_1=\sigma_s,\sigma_2=\sigma_3=0 σ1=σs,σ2=σ3=0
那么,式(36)、(37)就为
3 s 1 = 2 σ s , 3 s 2 = 3 s 3 = − σ s 3s_1=2\sigma_s,3s_2=3s_3=-\sigma_s 3s1=2σs,3s2=3s3=σs
那么 k 3 = max ⁡ ( ∣ s 1 ∣ , ∣ s 2 ∣ , ∣ s 3 ∣ ) = 2 σ s 3 (38) k_3=\max(|s_1|,|s_2|,|s_3|)=\frac{2\sigma_s}{3}\tag{38} k3=max(s1,s2,s3)=32σs(38)
那么,式(36)、(37)就可以变换为
3 s 1 = 2 σ 1 − ( σ 2 + σ 3 ) = ± 2 σ s 3 s 2 = 2 σ 2 − ( σ 1 + σ 3 ) = ± 2 σ s 3 s 3 = 2 σ 3 − ( σ 1 + σ 2 ) = ± 2 σ s (39) \begin{aligned} 3s_1=2\sigma_1-(\sigma_2+\sigma_3)=\pm2\sigma_s\\ 3s_2=2\sigma_2-(\sigma_1+\sigma_3)=\pm2\sigma_s\\ 3s_3=2\sigma_3-(\sigma_1+\sigma_2)=\pm2\sigma_s \end{aligned}\tag{39} 3s1=2σ1(σ2+σ3)=±2σs3s2=2σ2(σ1+σ3)=±2σs3s3=2σ3(σ1+σ2)=±2σs(39)
最大偏应力屈服条件和Tresca在主应力未知时,其屈服曲线形式相对复杂。此处不展开了。

三种屈服条件在 π \pi π平面上的截面线如图下图6所示。其中,Mises屈服截面线为圆,Tresca屈服截面线为其内接六边形,最大偏应力屈服截面线为其外接六边形。
在这里插入图片描述
图 6 三种屈服条件的示意图 图6\quad 三种屈服条件的示意图 6三种屈服条件的示意图

  • 25
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的骆驼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值