DeepSeek-初识

是什么?

        专注于通用人工智能的研发,目标是创造真正像人类一样思考、学习和解决问题的AI

DeepSeek的种类

比较维度V3R1
总体定位“瑞士军刀”版的全能型选手专业的“手术刀”
设计哲学一专多能专攻复杂推理
适用任务快速执行明确定义的任务处理复杂的任务
主要场景日常办公(邮件、报告)、知识密集型任务、教育测试、数学竞赛、代码竞赛复杂问题解决、策略规划、模糊信息决策、科研探索、算法优化
技术特点支持联网搜索、可实现文件解析等复合功能、需要详细指令引导开源免费、具备自主决策能力、能基于模糊目标推导解决方案
应用定位企业日常运营的标准化工具创新解决方案的探索性工具
响应模式按标准化流程执行,如同高铁沿轨道行驶,能够精准抵达构建网状思维路径,允许思维的多角度跃迁
风险控制通过强规范约束确保输出稳定性,适合法律文书生成等低容错场景通过弱约束设计释放创造力,但也需要承担更大的不确定性
交互逻辑需要“过程-结果”的明确指令仅需要定义目标即可自主推理,如同导航软件的“智能推荐”功能

DeepSeek的满血版和蒸馏版

        当前开源的DeepSeek-R1系列模型包含全参数版本R1-671B(1B是10亿个参数)

参数规模硬件需求与推理速度任务表现应用场景
1.5B-14B移动端3GB内容,在RTX3060显卡上流畅运行藏头诗逻辑断裂、静态代码生成容错率较高的场景
32B-70B64GB内容+32GB显存,在A100显卡上达8-9token/s(token:文本分割的最小单元)动态代码生成、数学问题求解企业级复杂任务
671B100GB以上内存,大规模GPU集群,建议通过云端API调用超越GPT-4,接近专业开发者水平前言科技探索

        在AI快速迭代的时代,真正的智慧不在于追求永久免费,而在于巧妙把握当下的免费窗口期,将AI工具高效整合进个人工作流,实现效率提升,这才是面对AI浪潮来袭的明智之举。

DeepSeek有哪些主要功能

DeepSeek的应用场景

如何正确提问

  1. 智能助手就像一个忠实的朋友,理解和交流的深度决定友谊的深度-要学会深度对话而不是肤浅交谈
  2. 提问框架如同搭建桥梁,连接人类思维与AI智慧的两岸-结构化提问十分重要
  3. AI的能力边界就像一个魔法圈,了解边界才能施展最强魔法-认知局限性的价值
  4. 多工具组合如同乐器合奏,单音再强也不如协同共鸣-工具协同的威力
  5. 使用AI就像驾驶马匹,熟悉马匹性格才能策马奔腾-了解特性的必要性
  6. 问题质量决定回答质量,就像种子决定果实-输入质量的关键作用
  7. 操作界面如同一张城市地图,熟悉路径才能快速到达目的地-熟悉基础操作的重要性
  8. AI助手就像智慧放大镜,帮助看见思维盲区-AI对人类思维的补充作用

### 关于 DeepSeek 系列学习资源 对于希望深入了解并掌握 DeepSeek 系列工具的用户来说,存在多个版本的实战教程可供选择。 #### 初识 DeepSeek Coder 针对想要快速上手 DeepSeek Coder 的用户,《深入探索 DeepSeek Coder:实战教程从入门到精通》提供了详尽指导[^1]。该书不仅介绍了如何安装配置环境以及基本操作方法,还涵盖了常见问题解决技巧等内容,适合新手阅读者循序渐进地提升自己的编程能力。 #### 掌握 DeepSeek-V2 模型应用 而对于那些对深度学习领域感兴趣的读者,则可以考虑《DeepSeek-V2: 实战教程从入门到精通》,这本书籍重点讲解了基于最新技术构建而成的 DeepSeek-V2 版本特性及其应用场景实践案例分析[^2]。书中通过具体项目实例引导读者理解理论知识的同时也注重培养实际动手解决问题的能力。 #### 进阶至 DeepSeek-V2.5 高级功能 最后,《深入探索 DeepSeek-V2.5:从入门到精通的实战教程》则进一步深化了前两本书的内容,在介绍 V2.5 新增特性的基础上加强了复杂任务处理方面的训练强度[^3]。此教材特别适用于已经具备一定基础并且渴望挑战更高难度课题的学习者们。 每一份资料都致力于让不同层次的技术爱好者都能找到适合自己水平的学习路径,并最终实现由浅入深、稳步提高的目标。 ```python # 示例代码片段展示如何加载预训练模型(假设为Python环境下) from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "deepseek-model/v2_5" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text_input = tokenizer("Sample input text", return_tensors="pt") output = model(**text_input) print(output.logits.softmax(dim=-1)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

世润

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值