最新开源LiDAR数据集LSOOD:四种常见的室外物体分类

点云PCL免费知识星球,点云论文速读。

标题:最新开源LiDAR数据集LSOOD:四种常见的室外物体分类

作者:Y Tian

来源:https://github.com/Tian-Yifei/LSOOD-LiDAR-Scanning-Outdoor-Object-Dataset

欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。

论文阅读模块将分享点云处理,SLAM,三维视觉,高精地图相关的文章。公众号致力于理解三维视觉领域相关内容的干货分享,欢迎各位加入我,我们一起每天一篇文章阅读,开启分享之旅,有兴趣的可联系微信dianyunpcl@163.com。

LSOOD数据集

LSOOD数据集(LiDAR Scanning Outdoor Object Dataset)由Velodyne32线激光雷达设备采集,包含四种常见的室外障碍物(行人、建筑、树木和灌木),可用于无人驾驶、遥感等领域的分类器训练。

由于现存的LiDAR扫描的物体分类数据集较少,较为知名的悉尼城市物体(Sydney Urban)数据集样本量小且种类较多,performance的提升难度较大。因此,LSOOD数据集更适合广大初学者,简单易懂的开始LiDAR物体分类的研究和学习。

该数据集从多个场景的中采集,例如道路,十字路口等。利用快速的空间聚类算法(Fast Spatial Clustering Method),将场景点云进行快速的实例分割,形成大量独立的物体点云。该算法在实例分割的过程中,每帧点云的处理速度为30ms左右。

由于LiDAR生成的点云数据具有稀疏、无纹理信息的特点,为了更加准确地判定物体的种类,该团队开发了如下图所示的半自动样本标记工具,结合障碍物周围的场景信息,提升障碍物的人工标签准确率。为了提升数据库中的点云样本质量,已将存在遮挡、结构不完整的点云样本剔除,尽可能保留结构较为完整的物体点云。

LSOOD数据集现有1056个障碍物样本,训练样本530个,测试样本526个。相较于现存的室外雷达点云分类公开数据集,LSOOD具有单个种类样本量大,点云样本质量较高,训练、测试集相对平衡等优势,易于初学者进行点云分类任务学习。不同于CAD模型生成的标准点云物体(如经典的ModelNet10/40),LSOOD数据集为LiDAR在真实场景下扫描得到,更适合应用于无人驾驶、智能机器人、遥感等多种领域。

目前LSOOD数据集包含建筑样本335,灌木223,行人83,及乔木415个。后续将公开更多的样本及分类类别。

LSOOD数据集中点云样本存储在.csv文件,每个.csv文件存储了不同的物体信息,包含了物体点云的x,y,z全局坐标(origin),物体中心为原点的局部坐标(relative),以及对象标签(object)。

LSOOD数据集可从github下载:

https://github.com/Tian-Yifei/LSOOD-LiDAR-Scanning-Outdoor-Object-Dataset

如果对实例分割的算法(快速的空间聚类)或物体标签标记工具感兴趣,具体细节请参考下述文章:

Y Tian,      W Song, L Chen, et al., A Fast Spatial Clustering Method for Sparse LiDAR      Point Clouds Using GPU Programming, Sensors 20 (8), 2309

W Song,      L Zhang, Y Tian, et al., CNN-based 3D object classification using Hough      space of LiDAR point clouds, Human-centric Computing and Information      Sciences 10 (1), 1-14

资源

三维点云论文及相关应用分享

【点云论文速读】基于激光雷达的里程计及3D点云地图中的定位方法

3D目标检测:MV3D-Net

三维点云分割综述(上)

3D-MiniNet: 从点云中学习2D表示以实现快速有效的3D LIDAR语义分割(2020)

win下使用QT添加VTK插件实现点云可视化GUI

JSNet:3D点云的联合实例和语义分割

大场景三维点云的语义分割综述

PCL中outofcore模块---基于核外八叉树的大规模点云的显示

基于局部凹凸性进行目标分割

基于三维卷积神经网络的点云标记

点云的超体素(SuperVoxel)

基于超点图的大规模点云分割

更多文章可查看:点云学习历史文章大汇总

SLAM及AR相关分享

【开源方案共享】ORB-SLAM3开源啦!

【论文速读】AVP-SLAM:自动泊车系统中的语义SLAM

【点云论文速读】StructSLAM:结构化线特征SLAM

SLAM和AR综述

常用的3D深度相机

AR设备单目视觉惯导SLAM算法综述与评价

SLAM综述(4)激光与视觉融合SLAM

Kimera实时重建的语义SLAM系统

SLAM综述(3)-视觉与惯导,视觉与深度学习SLAM

易扩展的SLAM框架-OpenVSLAM

高翔:非结构化道路激光SLAM中的挑战

SLAM综述之Lidar SLAM

基于鱼眼相机的SLAM方法介绍

往期线上分享录播汇总

第一期B站录播之三维模型检索技术

第二期B站录播之深度学习在3D场景中的应用

第三期B站录播之CMake进阶学习

第四期B站录播之点云物体及六自由度姿态估计

第五期B站录播之点云深度学习语义分割拓展

第六期B站录播之Pointnetlk解读

[线上分享录播]点云配准概述及其在激光SLAM中的应用

[线上分享录播]cloudcompare插件开发

[线上分享录播]基于点云数据的 Mesh重建与处理

[线上分享录播]机器人力反馈遥操作技术及机器人视觉分享

[线上分享录播]地面点云配准与机载点云航带平差

点云PCL更多活动请查看:点云PCL活动之应届生校招群

扫描下方微信视频号二维码可查看最新研究成果及相关开源方案的演示:

如果你对本文感兴趣,请点击“原文阅读”获取知识星球二维码,务必按照“姓名+学校/公司+研究方向”备注加入免费知识星球,免费下载pdf文档,和更多热爱分享的小伙伴一起交流吧!

以上内容如有错误请留言评论,欢迎指正交流。如有侵权,请联系删除

扫描二维码

                   关注我们

让我们一起分享一起学习吧!期待有想法,乐于分享的小伙伴加入免费星球注入爱分享的新鲜活力。分享的主题包含但不限于三维视觉,点云,高精地图,自动驾驶,以及机器人等相关的领域。

分享与方式:微信“920177957”(需要按要求备注) 联系邮箱:dianyunpcl@163.com,欢迎企业来联系公众号展开合作。

点一下“在看”你会更好看耶

  • 1
    点赞
  • 1
    评论
  • 7
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

Being_young

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值