离散非周期信号傅里叶变换

离散非周期傅里叶变换的思想就是将非周期信号拼接成为周期的离散信号来处理。如下图所示:

离散非周期信号x[n]拼接成周期信号\small \tilde{x}[n],n2-n1=N。从而我们可以得到\small \tilde{x}[n]的傅里叶级数表示:

\small \tilde{x}[n]=\sum_{k=<N>}X_{k}e^{ik\frac{2\pi}{N}n}

其中,\small X_{k}=\frac{1}{N}\sum_{n=<N>}\tilde{x}[n]e^{-ik\frac{2\pi}{N}n}。由于n2-n1=N,且\small x[n]=\tilde{x}[n]在区间[n1,n2],而对区间[n1,n2]之外的值,x[n]=0。所以得:

\small X_{k}=\frac{1}{N}\sum_{n=n1}^{n2}x[n]e^{-ik\frac{2\pi}{N}n}=\frac{1}{N}\sum_{n=-\infty}^{\infty}x[n]e^{-ik\frac{2\pi}{N}n}

\small X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-iwn},其中\small w=kw_{0}=k\frac{2\pi}{N}。得:

\small X_{k}=\frac{1}{N}X{e^{ikw_{0}}}

将上式代入\small \tilde{x}[n]的傅里叶级数,得:

\small \tilde{x}[n]=\sum_{k=<N>}\frac{1}{N}X(e^{ikw_{0}})e^{ik\frac{2\pi}{N}n}=\frac{1}{2\pi}\sum_{k=<N>}X(e^{ikw_{0}})e^{ikw_{0}n}w_{0}

另因为k为整数,dk表示k值一次的变化量,所以dk=1。那么\small \sum_{k=<N>}...dk等价于\small \int_{k=<N>}...dk。因此,上式继续推导:

\small \tilde{x}[n]=\frac{1}{2\pi}\sum_{k=<N>}X(e^{ikw_{0}})e^{ikw_{0}n}w_{0}\\ \frac{1}{2\pi}\int_{k=<N>}X(e^{ikw_{0}})e^{ikw_{0}n}w_{0}d_{k}\\ \frac{1}{2\pi}\int_{2\pi}X(e^{iw})e^{iwn}dw

当N->\small \infty时,\small \tilde{x}[n]=x[n]。至此,我们已经得到离散信号\small x[n]的傅里叶变换\small X(e^{jw}),且信号x[n]为\small X(e^{jw})得逆变化。如下:

\small \left\{\begin{matrix} x[n]=\frac{1}{2\pi}\int_{2\pi}X(e^{iw})e^{iwn}dw\\ X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-iwn}\\ \end{matrix}\right.

2维离散周期非周期傅里叶变换

\small \left\{\begin{matrix} x[m,n]=\frac{1}{(2\pi)^2}\int_{2\pi}\int_{2\pi}X(e^{iw_{1}},e^{iw2})e^{i(w_{1}m+w_{2}n)}dw_{1}dw_{2}\\ X(e^{iw_{1}},e^{iw_{2}})=\sum_{m=-\infty}^{\infty}\sum_{n=\infty}^{\infty}x[m,n]e^{-i(w_{1}m+w_{2}n)}\\ \end{matrix}\right.

https://blog.csdn.net/u012841922/article/details/84664627

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值