信号与系统(11)- 非周期信号的频谱:傅里叶变换

首先回顾一下在信号与系统(10)-周期性信号的频谱中提及的方波脉冲信号,如果脉冲宽度 τ \tau τ进行无线增大,则信号变为非周期信号,并且幅度频谱由离散谱变为连续频谱,如下所示:

周期性方波脉冲,即:
f ( t ) = { A ,     − τ 2 + k T ≤ t ≤ τ 2 + k T 0 ,     其 他 f(t)=\left\{ \begin{aligned} A,\space \space \space & -\frac{\tau}{2}+kT \leq t\leq\frac{\tau}{2}+kT \\0, \space \space \space &其他 \end{aligned} \right. f(t)=A,   0,   2τ+kTt2τ+kT
其图像如下所示:

其中 τ \tau τ是脉冲的宽度,T是周期,幅值是A。

经过傅里叶级数展开后,其系数为:
C n = A τ T S a ( n Ω τ 2 ) C_n=\frac{A\tau}{T}Sa(\frac{n\Omega \tau}{2}) Cn=TAτSa(2nΩτ)

其中 S a ( x ) = s i n x x Sa(x)=\frac{sinx}{x} Sa(x)=xsinx,是抽样函数。

通过上式画出周期方波脉冲信号的频谱如下:

改变周期方波信号的周期T,保持脉冲宽度,其频谱变化如下

从上述频谱中可以观察出3点:

  • 谱线密度随着周期T的增加而增加,即随着T的增大,相邻谱线之间的间距越小。这是因为频率 f = 1 T f=\frac{1}{T} f=T1,且 Ω = 2 π T \Omega = \frac{2\pi}{T} Ω=T2π的原因。很显然当T增加时, n Ω n\Omega nΩ将变小,因此谱线之间的间距变小。
  • 谱线的幅值逐渐降低。观察 C n = A τ T S a ( n Ω τ 2 ) C_n=\frac{A\tau}{T}Sa(\frac{n\Omega \tau}{2}) Cn=TAτSa(2nΩτ)可知,当T增大时,其幅值 A τ T \frac{A\tau}{T} TAτ将减小。
  • 不论T增大还是减小,谱线的包络线形状上保持不变,因为Sa函数除幅值外没有变化。

因此:非周期信号可以看成是周期信号的周期趋向无穷大时的极限

下面将解释如何进行这种极限和积分运算。

1. 由傅里叶级数的系数到傅里叶变换

首先回顾在信号与系统(8)- 复指数形式的傅里叶级数傅里叶级数的系数求法,如下所示:

信号 f ( t ) f(t) f(t)通过复指数正交函数集展开为:
f ( t ) = ∑ n = − ∞ + ∞ [ C n ⋅ e j ( n Ω t ) ] f(t)=\sum_{n=-\infty}^{+\infty}[C_n\cdot e^{j(n\Omega t)}] f(t)=n=+[Cnej(nΩt)]
上式中系数 C n C_n Cn为:
C n = ∫ t 1 t 2 f ( t ) ⋅ ( e j n Ω t ) ∗ ∫ t 1 t 2 ( e j n Ω t ) ( e j n Ω t ) ∗ = 1 T ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n=\frac{\int_{t_1}^{t_2}f(t)\cdot (e^{j{n\Omega t}})^*}{\int_{t_1}^{t_2}(e^{j{n\Omega t}})(e^{j{n\Omega t}})^*} = \frac{1}{T}\int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt Cn=t1t2(ejnΩt)(ejnΩt)t1t2f(t)(ejnΩt)=T1t1t2f(t)ejnΩtdt
其中 Ω = 2 π T \Omega = \frac{2\pi}{T} Ω=T2π,且 f ( t ) f(t) f(t)是周期为T的函数,以上便是周期函数的傅里叶级数展开。

在周期信号的傅里叶级数展开中,由系数 C n C_n Cn关于 n n n或频率构成的图谱,称为幅度频谱,反应了构成信号 f ( t ) f(t) f(t)的各个频率分量及各个频率分量的幅度。

那对于连续非周期函数呢?什么样的幅度频谱可以反应一个非周期信号的频率组成成分呢?

为了回答这个问题,首先要对信号 f ( t ) f(t) f(t)系数 C n C_n Cn做如下变化:

  1. 将周期信号的周期T进行趋近无穷大,即 T → ∞ T\rightarrow \infty T,使之变为一个非周期信号;由之前提到的方波周期信号可知,若 T → ∞ T\rightarrow \infty T,频谱间隔将趋近无穷小,信号在各个频率点上都有信号分量,频率的取值变为连续取值。
  2. 由于 T → ∞ T\rightarrow \infty T时,系数 C n → 0 C_n\rightarrow 0 Cn0,即在每一个频率点上的频率分量大小将趋近于零。为了解决这个问题,人为的将系数 C n C_n Cn乘以T,即

C n ⋅ T ( 2 π C n Ω ) = T ⋅ ∫ t 1 t 2 f ( t ) ⋅ ( e j n Ω t ) ∗ ∫ t 1 t 2 ( e j n Ω t ) ( e j n Ω t ) ∗ = ∫ t 1 t 2 f ( t ) e − j n Ω t d t C_n\cdot T(2\pi \frac{C_n}{\Omega})=T\cdot \frac{\int_{t_1}^{t_2}f(t)\cdot (e^{j{n\Omega t}})^*}{\int_{t_1}^{t_2}(e^{j{n\Omega t}})(e^{j{n\Omega t}})^*} = \int_{t_1}^{t_2}f(t)e^{-jn\Omega t}dt CnT(2πΩCn)=Tt1t2(ejnΩt)(ejnΩt)t1t2f(t)(ejnΩt)=t1t2f(t)ejnΩtdt

由于当 T → ∞ T\rightarrow \infty T时, Ω → 0 \Omega \rightarrow 0 Ω0,且 n Ω n\Omega nΩ将变为一个连续变量,用 ω \omega ω表示,并且将 T ⋅ C n T\cdot C_n TCn F ( j ω ) F(j\omega) F(jω)表示,而由于周期T趋近于无穷,因此积分限便从 T = t 2 − t 1 T=t_2-t_1 T=t2t1变为了 [ − ∞ , + ∞ ] [-\infty,+\infty] [,+],则上式变为:
F ( j ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(j\omega) = \int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt F(jω)=+f(t)ejωtdt
上式便是著名的傅里叶变换

问题:如何理解傅里叶变换的物理意义?

傅里叶变换 F ( j ω ) F(j\omega) F(jω)本质上本应该代表着信号中各个频率分量的幅度,但是由于系数 C n C_n Cn除以了周期T,因此在量纲上不符合幅度的量纲,而观察经过处理之后的系数,即 C n ⋅ T C_n\cdot T CnT,如果将 T = 2 π T T=\frac{2\pi}{T} T=T2π带入,则 C n ⋅ T C_n\cdot T CnT变为 2 π C n Ω 2\pi \frac{C_n}{\Omega} 2πΩCn。其 C n T \frac{C_n}{T} TCn可以理解为“单位频带内的信号分量的幅度",而 2 π 2\pi 2π是一个常数,所以 F ( j ω ) F(j\omega) F(jω)可以被理解为频谱密度函数,它表示信号在该频率点上的分量相对大小。而绝对大小,由于周期趋于无穷,为0.

除此之外,傅里叶变换于傅里叶级数同宗同源,因次也具备傅里叶级数的一部分性质。如果 f ( t ) f(t) f(t)为实数函数,则 F ( j ω ) F(j\omega) F(jω)的幅度是关于 ω \omega ω的偶函数,而 F ( j ω ) F(j\omega) F(jω)的相位是关于 ω \omega ω的奇函数。

2. 由周期性信号的傅里叶级数展开到傅里叶反变换

上一部分对傅里叶级数系数进行了变化而得到了傅里叶变换,加下来的问题是,如何通过傅里叶变换,得到原函数呢?

为解答这个问题,同样回顾傅里叶级数展开,如下所示:

信号 f ( t ) f(t) f(t)通过复指数正交函数集展开为:
f ( t ) = ∑ n = − ∞ + ∞ [ C n ⋅ e j ( n Ω t ) ] f(t)=\sum_{n=-\infty}^{+\infty}[C_n\cdot e^{j(n\Omega t)}] f(t)=n=+[Cnej(nΩt)]
为得到非周期信号 f ( t ) f(t) f(t),将上式做如下变化:

  1. C n = F ( n Ω t ) T C_n=\frac{F(n\Omega t)}{T} Cn=TF(nΩt),这是因为在之前求解非周期信号的频率分量幅值时,为了避免幅值趋于无穷小,将系数乘以了周期,进而得到 F ( n Ω t ) F(n\Omega t) F(nΩt)
  2. 由于这里研究的信号是非周期信号,所以需要将周期进行趋向无穷大,即: T → ∞ T\rightarrow \infty T
  3. T → ∞ T\rightarrow \infty T时, Ω → 0 \Omega \rightarrow0 Ω0,且离散的 n Ω n\Omega nΩ变为连续的 ω \omega ω,求和 ∑ \sum 变为了积分 ∫ \int

通过上述变换,原函数 f ( t ) f(t) f(t)变为了:
f ( t ) = lim ⁡ T → ∞ ∑ n = − ∞ + ∞ [ F ( n Ω t ) T ⋅ e j ( n Ω t ) ] = lim ⁡ Ω → 0 ∑ n = − ∞ + ∞ 1 2 π Ω F ( j n Ω ) ⋅ e j ( n Ω t ) = 1 2 π ∫ − ∞ + ∞ F ( j ω ) ⋅ e j ω t d ω \begin{aligned} f(t)&=\lim_{T\rightarrow \infty}\sum_{n=-\infty}^{+\infty}[\frac{F(n\Omega t)}{T}\cdot e^{j(n\Omega t)}] \\&=\lim_{\Omega \rightarrow 0}\sum_{n=-\infty}^{+\infty}\frac{1}{2\pi}\Omega F(jn\Omega)\cdot e^{j(n\Omega t)} \\&=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(j\omega)\cdot e^{j\omega t}d\omega \end{aligned} f(t)=Tlimn=+[TF(nΩt)ej(nΩt)]=Ω0limn=+2π1ΩF(jnΩ)ej(nΩt)=2π1+F(jω)ejωtdω
上式
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( j ω ) ⋅ e j ω t d ω \begin{aligned} f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(j\omega)\cdot e^{j\omega t}d\omega \end{aligned} f(t)=2π1+F(jω)ejωtdω
便是傅里叶反变换

问题:如何理解傅里叶反变换的物理意义?

傅里叶的反变换其实本质上就是将信号分解为一系列复数的三角函数的积分,而积分也是求和的一种。因此,傅里叶反变换就是针对非周期信号的”傅里叶级数展开“,只不过求和变为了积分,频率由离散变为了连续,由于将周期信号的周期进行趋向无穷大,因此多了系数 1 2 π \frac{1}{2\pi} 2π1

由于傅里叶反变换同傅里叶级数展开同宗同源,因此同样,这样的变换存在的条件仍然是Direchlet条件。

3. 傅里叶变换的总结

  1. 傅里叶变换和傅里叶级数的对比
相关对比项傅里叶级数傅里叶变换
对原信号 f ( t ) f(t) f(t)的分解 f ( t ) = ∑ n = − ∞ + ∞ [ C n ⋅ e j ( n Ω t ) ] f(t)=\sum_{n=-\infty}^{+\infty}[C_n\cdot e^{j(n\Omega t)}] f(t)=n=+[Cnej(nΩt)] f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( j ω ) ⋅ e j ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(j\omega)\cdot e^{j\omega t}d\omega f(t)=2π1+F(jω)ejωtdω(傅里叶反变换)
F ( j ω ) F(j\omega) F(jω) C n C_n Cn F ( j ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(j\omega) = \int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt F(jω)=+f(t)ejωtdt F ( j ω ) = l i m T → ∞ ( T ⋅ C n ) = ∫ t 1 t 2 f ( t ) e − j ω t d t F(j\omega) =lim_{T\rightarrow \infty}(T\cdot C_n)= \int_{t_1}^{t_2}f(t)e^{-j\omega t}dt F(jω)=limT(TCn)=t1t2f(t)ejωtdt(傅里叶变换)
频谱连续性离散频谱连续频谱
收敛性收敛收敛
谐波性存在,仅出现在基波频率的整数倍的点上不存在,频谱变成了连续频谱,且每一点频率都有对应的幅值
适用条件Direchlet条件Direchlet条件

4. 常见信号的傅里叶变换及其反变换

函数名称傅里叶变换傅里叶反变换
冲激函数 δ ( t ) \delta(t) δ(t) 1 1 1
单边指数信号 e − α t u ( t ) e^{-\alpha t}u(t) eαtu(t) 1 α + j ω \frac{1}{\alpha+j\omega} α+jω1
双边指数信号 e − α ∣ t ∣ e^{-\alpha \vert t\vert} eαt 2 α α 2 + ω 2 \frac{2\alpha}{\alpha^2+\omega^2} α2+ω22α
门函数 G τ G_{\tau} Gτ τ ⋅ S a ( ω τ 2 ) \tau\cdot Sa(\frac{\omega \tau}{2}) τSa(2ωτ)
阶跃信号 u ( t ) u(t) u(t) π ⋅ δ ( ω ) + 1 j ω \pi \cdot\delta(\omega)+\frac{1}{j\omega} πδ(ω)+jω1
直流信号 1 1 1 2 π ⋅ δ ( ω ) 2\pi \cdot\delta(\omega) 2πδ(ω)
复正弦信号 e j ω c t e^{j\omega_c t} ejωct 2 π ⋅ δ ( ω − ω c ) 2\pi \cdot\delta(\omega-\omega_c) 2πδ(ωωc)

其中阶跃信号和直流信号虽然不满足绝对可积条件,但是通过引入冲激函数,也可以计算出傅里叶变换。这里推荐记忆上述常见傅里叶变换的结果。

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值