【ISP】明视觉和暗视觉

文章探讨了视觉产生的原理,特别是在不同光照条件下的明视觉和暗视觉状态。明视觉在高照度下,由锥状细胞主导,具有丰富的色感;暗视觉在低照度下,由杆状细胞主导,无法分辨颜色。理解这些视觉机制对于优化夜间照明设计至关重要,特别是要考虑到人眼在不同亮度下的视觉灵敏度和光谱响应变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.视觉的产生

光被照射到的物体反射后刺击人的视觉系统,产生了“视觉”。产生视觉是进行夜景照明的蕞终目的,其效果直接决定着夜景照明的质量,并且影响了大多数人的夜心理与夜行为,了解人的视觉产生规律是获得景观照明蕞佳效果的前提。

明视觉”与“暗视觉”。人体眼球的视网膜上分布着两种感光细胞:杆状细胞和锥状细胞。这两种细胞对光的感受度不同。杆状细胞对光的感受性很高,而锥状细胞对光的感受性较低,但是杆状细胞不能分辨颜色,只有当锥状细胞感受到光的刺击时才有色觉。杆状细胞和锥状细胞的不同特性形成了眼睛的两种视觉:“明视觉”与“暗视觉”。

照度较高的条件下,眼睛处于明视觉状态,锥状细胞工作,有丰富的色感;而在低照度下,眼睛处于暗视觉状态,杆状细胞工作,能感受到极弱的光,但物体看上去却是灰濛濛的。夜晚,人的眼睛一般处于暗视觉状态,所以,如果要在夜晚突出建筑物的精彩部位或者景观的高潮,最好使用人眼对其视觉灵敏度高的光线。人眼在明视觉与暗视觉状态下对光的视觉灵敏度是不一样,而且在可见光谱范围内的视觉灵敏度也不均匀,它随波长而变化,同抛物线的形状。

2.明视觉和暗视觉的定义

由于人眼存在的两种光感受器细胞--视锥和视杆下拨的不同特性,人眼的视觉根据亮度的变化可分为明视觉、暗视觉和中间视觉。

根据国际照明学会(CIE)1983年的定义,明视觉指亮度超过几个cd/平方米(通常认为超过3cd/平方米)的环境,此时视觉主要由视锥细胞起作用,最大的视觉响应在光谱蓝绿区间的555nm处;暗视觉指环境亮度低于0.001cd/平方米时的视觉,此时视杆细胞是主要作用的感光细胞,光谱光视效率的峰值约在507nm;中间视觉介于明视觉和暗视觉亮度之间,此时人眼的视锥和视杆细胞同时响应,并且随着亮度的变化,两种细胞的活跃程度也发生变化。

一般白天晴朗的太阳到晚上台灯的照明,都是在明视觉范围内;而道路照明和明朗的月夜下,为中间视觉照明;昏暗的星空下就是暗视觉。人眼的明视觉和暗视觉特征如下表所示,中间视觉介于明视觉和暗视觉之间。

特征

明视觉

暗视觉

光感受器

视锥细胞

视杆细胞

光化学物质

锥体色素

视紫红质

色觉

正常的三色

无色

所在视网膜区域

中心

周边

暗适应速度

快(8分钟或更少)

慢(30分钟或更多)

空间分辨能力

时间辨别

反应快

反应慢

照明水平

昼光(>3cd/平方米)

夜光(<0.001cd/平方米)

光谱灵敏峰值

555nm

507nm

在中间视觉状态下,人眼视网膜上的两种光感受器细胞--视锥和视杆细胞同时发生作用,当适应亮度逐渐由明到暗时,光谱灵敏度曲线逐步向短波方向移动,这种现象称为普尔金偏移(Purkinje Shift)。由于这种偏移,对于夜间照明的涉及、测量和计算仍沿用明视觉光谱光视效率的基础将产生不恰当的甚至时错误的结果。目前国际上照明界越来越多的专家注意到这一现象,并从各方面研究中间视觉照明下的特性及其对夜间照明的应用的影响。

    • 光谱光视效率

有待补充

参考

图为人眼的明视觉光谱光视效率V(λ),对正 - 百度文库

明视觉和暗视觉的区别 - 百度文库

<think>好的,用户现在问的是计算机视觉机器视觉的区别。之前他让我介绍了摄像头里的图像处理机制,里面提到了很多海康威视的技术案例,还有ISP、传感器、智能分析等内容。现在他可能想进一步了解这两个相关领域的不同点,可能是学术上的兴趣,或者实际应用中需要明确两者的区别来选择技术方案。 首先,我需要明确计算机视觉(Computer Vision)机器视觉(Machine Vision)的核心区别。计算机视觉更侧重于从图像中提取信息,理解内容,属于更广泛的AI领域,应用比如图像识别、自动驾驶。而机器视觉更多用于工业自动化,强调在制造或生产环境中进行检测、测量引导,比如生产线上的质量检查。 接下来,用户可能需要的不仅是定义,还有应用场景、技术重点、处理方式的不同。比如,计算机视觉可能使用深度学习模型处理复杂场景,而机器视觉可能依赖传统的图像处理算法,实时性要求更高。此外,硬件上的区别,比如机器视觉常与工业相机、传感器集成,而计算机视觉可能更依赖通用摄像头GPU处理。 还要考虑用户可能的背景。他之前对摄像头技术感兴趣,可能是在安防、智能制造等领域工作,或者学习相关技术。需要结合实际案例来说明,比如之前提到的海康威视的ColorVuDarkFighter技术,可能属于计算机视觉的应用,而生产线上的缺陷检测则是机器视觉的例子。 另外,用户可能潜在想知道如何选择这两个领域的技术来解决实际问题,或者在学习时如何侧重不同的知识点。需要指出两者的联系,比如都涉及图像处理,但目标方法不同。 最后,要确保回答结构清晰,分点对比,结合之前的例子,比如提到海康的技术在计算机视觉中的应用,而机器视觉可能更多在工业检测中的案例。同时,语言要通俗易懂,避免过于学术化,保持口语化但专业。</think>计算机视觉(Computer Vision)机器视觉(Machine Vision)是图像处理领域的两个重要分支,虽然技术上有重叠,但目标、应用场景技术侧重点存在显著差异。以下是两者的对比分析: --- ### **1. 定义与核心目标** | **维度** | **计算机视觉(CV)** | **机器视觉(MV)** | |--| | **核心目标** | **理解图像内容**,模拟人类视觉的认知能力 | **执行特定任务**,替代人工完成检测或控制 | | **输出结果** | 语义信息(如物体类别、场景描述、行为分析) | 物理参数(如尺寸、坐标、缺陷存在与否) | | **典型问题** | "图片里有什么?发生了什么?" | "零件是否合格?机器臂应该移动到哪个位置?" | --- ### **2. 技术侧重点对比** #### **(1) 算法复杂度** - **计算机视觉**: - 依赖深度学习(CNN、Transformer)、复杂模型(如YOLO、ResNet) - 需处理非结构化数据(如自然场景、模糊图像) - **案例**:海康威视的“人脸属性分析”可识别年龄、性别、情绪等20+标签 - **机器视觉**: - 以传统图像处理为主(边缘检测、模板匹配、形态学运算) - 强依赖结构化场景(固定光照、位置、背景) - **案例**:工业相机用Halcon软件检测PCB板焊点缺陷,精度达0.01mm #### **(2) 实时性要求** - **计算机视觉**: - 允许一定延迟(如视频分析可接受秒级响应) - 部分场景需云端协同(如自动驾驶的语义分割) - **机器视觉**: - 毫秒级实时响应(生产线检测速度达1000件/分钟) - 必须本地化部署(工厂网络隔离,无法依赖云端) #### **(3) 硬件配置** | **CV典型配置** | **MV典型配置** | |-----------------------------|-------------------------------| | 普通RGB摄像头+GPU服务器 | 工业相机(Basler、FLIR)+FPGA | | 支持多光谱/3D摄像头(可选) | 高精度光源+机械定位装置 | | 依赖通用算力(如NVIDIA Jetson)| 专用视觉控制器(如康耐视In-Sight)| --- ### **3. 应用场景差异** #### **计算机视觉** - **智慧城市**:交通流量分析、违章行为识别(如海康威视“交通事件检测系统”) - **医疗影像**:CT/MRI图像病灶分割(如肺结节AI辅助诊断) - **消费电子**:手机人脸解锁、AR滤镜(如iPhone Face ID) #### **机器视觉** - 食品包装完整性检测(漏装、异物) - 汽车零部件尺寸测量(误差<±0.005mm) - **自动化控制**: - 机械臂引导(基于视觉的六轴机器人定位) - 物流分拣(二维码/OCR识别包裹流向) --- ### **4. 性能评价标准** | **维度** | **计算机视觉** | **机器视觉** | |--|---------------------------------------| | 核心指标 | 准确率(mAP)、召回率 | 重复精度(Repeatability)、稳定性 | | 容错要求 | 可接受部分误检(通过概率修正) | 零容忍误检(可能引发生产线停机损失) | | 环境适应性 | 需应对复杂光照、遮挡 | 依赖严格的环境控制(光源、震动隔离) | --- ### **5. 技术融合趋势** - **CV向MV渗透**: - 深度学习用于复杂缺陷检测(如半导体晶圆检测) - **MV向CV拓展**: - 工业相机+AI算法实现产线行为分析(如工人操作合规性监测) - **案例**:ABB机器人集成视觉系统,可动态调整抓取策略 --- ### **总结:关键区别一句话概括** - **计算机视觉**:_"Seeing and understanding the world."_ (从图像中提取语义信息,服务于认知决策) - **机器视觉**:_"Measuring and controlling the world."_ (从图像中提取物理参数,服务于自动化执行) 两者正通过**边缘AI芯片**(如海康“深眸”系列)、**3D视觉**(结构光/ToF)等技术逐步融合,但核心目标差异决定了其技术路径的长期分野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值