什么是向量的模长

向量的模长(或称为范数) 是一个量度,用来表示向量的大小或长度。在几何学中,向量的模长相当于从原点到该向量终点的距离。对于一个向量 v \mathbf{v} v,其模长表示该向量在空间中延伸的程度。

向量模长的定义

对于一个 n n n-维向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,,vn),其模长(或范数)定义为:

∥ v ∥ = v 1 2 + v 2 2 + ⋯ + v n 2 \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} v=v12+v22++vn2

这里, v 1 , v 2 , … , v n v_1, v_2, \dots, v_n v1,v2,,vn 是向量 v \mathbf{v} v 在每个维度上的分量。

举例

1. 二维向量的模长

对于二维向量 v = ( 3 , 4 ) \mathbf{v} = (3, 4) v=(3,4),其模长为:

∥ v ∥ = 3 2 + 4 2 = 9 + 16 = 25 = 5 \|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 v=32+42 =9+16 =25 =5

这意味着向量 ( 3 , 4 ) (3, 4) (3,4) 的模长是 5。

2. 三维向量的模长

对于三维向量 v = ( 1 , 2 , 2 ) \mathbf{v} = (1, 2, 2) v=(1,2,2),其模长为:

∥ v ∥ = 1 2 + 2 2 + 2 2 = 1 + 4 + 4 = 9 = 3 \|\mathbf{v}\| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 v=12+22+22 =1+4+4 =9 =3

这意味着向量 ( 1 , 2 , 2 ) (1, 2, 2) (1,2,2) 的模长是 3。

向量的模长在几何学中的意义

  • 几何含义:模长可以理解为向量的“长度”或“距离”,即从原点到该向量的终点的距离。

  • 在二维空间中,如果你有一个从原点到点 ( x , y ) (x, y) (x,y) 的向量,其模长即为原点到该点的直线距离,按照勾股定理计算。

    例如,二维向量 ( 3 , 4 ) (3, 4) (3,4) 的模长 5 5 5 就是从原点 ( 0 , 0 ) (0, 0) (0,0) 到点 ( 3 , 4 ) (3, 4) (3,4) 的直线距离。

  • 单位向量:如果一个向量的模长为 1,这个向量被称为单位向量。单位向量表示方向,但不考虑大小,它在向量空间中的作用是确定方向。

模长的物理意义

在物理中,向量的模长通常表示物理量的大小。例如:

  • 速度向量的模长表示物体的速度
  • 力向量的模长表示力的大小
  • 位移向量的模长表示物体移动的距离

向量模长的性质

  1. 非负性:任何向量的模长都是非负的,即:
    ∥ v ∥ ≥ 0 \|\mathbf{v}\| \geq 0 v0
    并且只有零向量的模长为零,即 ∥ 0 ∥ = 0 \|\mathbf{0}\| = 0 0=0

  2. 正齐性(尺度不变性):如果你对一个向量进行缩放,即将其乘以一个常数 c c c,那么新的向量的模长是原模长的绝对值与常数 c c c 的乘积:
    ∥ c v ∥ = ∣ c ∣ ∥ v ∥ \|c\mathbf{v}\| = |c| \|\mathbf{v}\| cv=c∣∥v
    这意味着缩放向量会相应地改变其长度。

  3. 三角不等式:对于任意两个向量 u \mathbf{u} u v \mathbf{v} v,它们的和的模长满足三角不等式:
    ∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ \|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\| u+vu+v
    这意味着两个向量的和的长度不超过它们各自长度的总和。

总结

  • 向量的模长是该向量的大小或长度,在几何中表示从原点到该向量终点的距离。
  • 对于一个 n n n-维向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,,vn),模长的计算公式是 ∥ v ∥ = v 1 2 + v 2 2 + ⋯ + v n 2 \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} v=v12+v22++vn2
  • 向量的模长在物理、工程、计算机科学、数据分析等领域中都有广泛应用,特别是在计算向量的大小、方向和相似度等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值