向量的模长(或称为范数) 是一个量度,用来表示向量的大小或长度。在几何学中,向量的模长相当于从原点到该向量终点的距离。对于一个向量 v \mathbf{v} v,其模长表示该向量在空间中延伸的程度。
向量模长的定义
对于一个 n n n-维向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,…,vn),其模长(或范数)定义为:
∥ v ∥ = v 1 2 + v 2 2 + ⋯ + v n 2 \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} ∥v∥=v12+v22+⋯+vn2
这里, v 1 , v 2 , … , v n v_1, v_2, \dots, v_n v1,v2,…,vn 是向量 v \mathbf{v} v 在每个维度上的分量。
举例
1. 二维向量的模长
对于二维向量 v = ( 3 , 4 ) \mathbf{v} = (3, 4) v=(3,4),其模长为:
∥ v ∥ = 3 2 + 4 2 = 9 + 16 = 25 = 5 \|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 ∥v∥=32+42=9+16=25=5
这意味着向量 ( 3 , 4 ) (3, 4) (3,4) 的模长是 5。
2. 三维向量的模长
对于三维向量 v = ( 1 , 2 , 2 ) \mathbf{v} = (1, 2, 2) v=(1,2,2),其模长为:
∥ v ∥ = 1 2 + 2 2 + 2 2 = 1 + 4 + 4 = 9 = 3 \|\mathbf{v}\| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 ∥v∥=12+22+22=1+4+4=9=3
这意味着向量 ( 1 , 2 , 2 ) (1, 2, 2) (1,2,2) 的模长是 3。
向量的模长在几何学中的意义
-
几何含义:模长可以理解为向量的“长度”或“距离”,即从原点到该向量的终点的距离。
-
在二维空间中,如果你有一个从原点到点 ( x , y ) (x, y) (x,y) 的向量,其模长即为原点到该点的直线距离,按照勾股定理计算。
例如,二维向量 ( 3 , 4 ) (3, 4) (3,4) 的模长 5 5 5 就是从原点 ( 0 , 0 ) (0, 0) (0,0) 到点 ( 3 , 4 ) (3, 4) (3,4) 的直线距离。
-
单位向量:如果一个向量的模长为 1,这个向量被称为单位向量。单位向量表示方向,但不考虑大小,它在向量空间中的作用是确定方向。
模长的物理意义
在物理中,向量的模长通常表示物理量的大小。例如:
- 速度向量的模长表示物体的速度。
- 力向量的模长表示力的大小。
- 位移向量的模长表示物体移动的距离。
向量模长的性质
-
非负性:任何向量的模长都是非负的,即:
∥ v ∥ ≥ 0 \|\mathbf{v}\| \geq 0 ∥v∥≥0
并且只有零向量的模长为零,即 ∥ 0 ∥ = 0 \|\mathbf{0}\| = 0 ∥0∥=0。 -
正齐性(尺度不变性):如果你对一个向量进行缩放,即将其乘以一个常数 c c c,那么新的向量的模长是原模长的绝对值与常数 c c c 的乘积:
∥ c v ∥ = ∣ c ∣ ∥ v ∥ \|c\mathbf{v}\| = |c| \|\mathbf{v}\| ∥cv∥=∣c∣∥v∥
这意味着缩放向量会相应地改变其长度。 -
三角不等式:对于任意两个向量 u \mathbf{u} u 和 v \mathbf{v} v,它们的和的模长满足三角不等式:
∥ u + v ∥ ≤ ∥ u ∥ + ∥ v ∥ \|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\| ∥u+v∥≤∥u∥+∥v∥
这意味着两个向量的和的长度不超过它们各自长度的总和。
总结
- 向量的模长是该向量的大小或长度,在几何中表示从原点到该向量终点的距离。
- 对于一个 n n n-维向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,…,vn),模长的计算公式是 ∥ v ∥ = v 1 2 + v 2 2 + ⋯ + v n 2 \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} ∥v∥=v12+v22+⋯+vn2。
- 向量的模长在物理、工程、计算机科学、数据分析等领域中都有广泛应用,特别是在计算向量的大小、方向和相似度等方面。