连续状态马尔可夫链

19.2.3 连续状态马尔可夫链

连续状态马尔可夫链 X = { X 0 , X 1 , ⋯   , X t , ⋯   } X = \{X_0, X_1, \cdots, X_t, \cdots\} X={X0,X1,,Xt,},随机变量 X t ( t = 0 , 1 , 2 , ⋯   ) X_t(t = 0, 1, 2, \cdots) Xt(t=0,1,2,) 定义在连续状态空间 S S S,转移概率分布由概率转移核或转移核(transition kernel)表示。
S S S 是连续状态空间,对于任意的 x ∈ S , A ⊂ S x \in S, A \subset S xS,AS,转移核 P ( x , A ) P(x, A) P(x,A) 定义为:
P ( x , A ) = ∫ A p ( x , y ) d y (19.19) P(x, A) = \int_A p(x, y)dy \tag{19.19} P(x,A)=Ap(x,y)dy(19.19)
其中, p ( x , ⋅ ) p(x, \cdot) p(x,) 是概率密度函数,满足 p ( x , ⋅ ) ≥ 0 p(x, \cdot) \geq 0 p(x,)0 P ( x , S ) = ∫ S p ( x , y ) d y = 1 P(x, S) = \int_S p(x, y)dy = 1 P(x,S)=Sp(x,y)dy=1。转移核 P ( x , A ) P(x, A) P(x,A) 表示从 x ∼ A x \sim A xA 的转移概率:
P ( X t = A ∣ X t − 1 = x ) = P ( x , A ) (19.20) P(X_t = A | X_{t-1} = x) = P(x, A) \tag{19.20} P(Xt=AXt1=x)=P(x,A)(19.20)
有时也将概率密度函数 p ( x , ⋅ ) p(x, \cdot) p(x,) 称为转移核。

若马尔可夫链的状态空间 S S S 上的概率分布 π ( x ) \pi(x) π(x) 满足条件:
π ( y ) = ∫ p ( x , y ) π ( x ) d x , ∀ y ∈ S (19.21) \pi(y) = \int p(x, y)\pi(x)dx, \quad \forall y \in S \tag{19.21} π(y)=p(x,y)π(x)dx,yS(19.21)
则称分布 π ( x ) \pi(x) π(x) 为该马尔可夫链的平稳分布。等价地,
π ( A ) = ∫ P ( x , A ) π ( x ) d x , ∀ A ⊂ S (19.22) \pi(A) = \int P(x, A)\pi(x)dx, \quad \forall A \subset S \tag{19.22} π(A)=P(x,A)π(x)dx,AS(19.22)
或简写为:
π = P π (19.23) \pi = P\pi \tag{19.23} π=Pπ(19.23)

1. 问题背景

设马尔可夫链 X = { X 0 , X 1 , … , X t , …   } X = \{X_0, X_1, \dots, X_t, \dots \} X={X0,X1,,Xt,},其中:

  • X t X_t Xt 是定义在连续状态空间 S S S 上的随机变量。
  • 转移概率分布通过转移核(Transition Kernel)或转移概率密度函数 p ( x , y ) p(x, y) p(x,y) 表示。
状态空间 S S S
  • S S S 是连续的状态集合,可以理解为实数空间(如 R \mathbb{R} R)或某个连续区间。

2. 转移核的定义

对于任意 x ∈ S x \in S xS 和任意状态集合 A ⊂ S A \subset S AS转移核 P ( x , A ) P(x, A) P(x,A) 定义为:

P ( x , A ) = ∫ A p ( x , y )   d y (19.19) P(x, A) = \int_A p(x, y) \, dy \quad \text{(19.19)} P(x,A)=Ap(x,y)dy(19.19)

符号含义
  1. p ( x , y ) p(x, y) p(x,y):从状态 x x x 转移到状态 y y y概率密度函数,满足:

    • p ( x , y ) ≥ 0 p(x, y) \geq 0 p(x,y)0:密度非负;
    • ∫ S p ( x , y )   d y = 1 \int_S p(x, y) \, dy = 1 Sp(x,y)dy=1:从状态 x x x 转移到整个状态空间 S S S 的概率为 1 1 1
  2. P ( x , A ) P(x, A) P(x,A):表示从状态 x x x 转移到状态集合 A A A转移概率,由 p ( x , y ) p(x, y) p(x,y) 在集合 A A A 上的积分表示。

  • y y y 表示连续状态空间 S S S 中的一个具体状态。
  • y ∈ A ⊂ S y \in A \subset S yAS y y y A A A 这个集合中的某个具体目标状态。
  • P ( x , A ) P(x, A) P(x,A) 的计算中,在目标集合 A A A 上对所有 y y y 的概率密度进行求和(连续情形通过积分实现),求得从状态 x x x 转移到集合 A A A 的总概率。

3. 转移概率性质

给定转移核 P ( x , A ) P(x, A) P(x,A),有如下性质:

P ( X t ∈ A ∣ X t − 1 = x ) = P ( x , A ) (19.20) P(X_t \in A \mid X_{t-1} = x) = P(x, A) \quad \text{(19.20)} P(XtAXt1=x)=P(x,A)(19.20)

  • P ( X t ∈ A ∣ X t − 1 = x ) P(X_t \in A \mid X_{t-1} = x) P(XtAXt1=x):表示在时刻 t − 1 t-1 t1 状态为 x x x 时,转移到集合 A A A 的概率;
  • 该概率由转移核 P ( x , A ) P(x, A) P(x,A) 描述。

举例说明
假设状态空间 S S S 是实数轴 R \mathbb{R} R,给定一个状态 x x x,目标集合 A = [ a , b ] ⊂ S A = [a, b] \subset S A=[a,b]S

  1. p ( x , y ) p(x, y) p(x,y):从状态 x x x 到任意状态 y y y 的转移概率密度。
  2. P ( x , A ) P(x, A) P(x,A):从 x x x 转移到 A A A 的概率,表示为:
    P ( x , A ) = ∫ a b p ( x , y )   d y P(x, A) = \int_a^b p(x, y) \, dy P(x,A)=abp(x,y)dy
  3. 通过公式 19.20:
    P ( X t ∈ [ a , b ] ∣ X t − 1 = x ) = P ( x , [ a , b ] ) P(X_t \in [a, b] \mid X_{t-1} = x) = P(x, [a, b]) P(Xt[a,b]Xt1=x)=P(x,[a,b])
    这表明,马尔可夫链从 x x x 出发,在下一步转移到区间 [ a , b ] [a, b] [a,b] 的概率,只取决于当前状态 x x x 和转移核 p ( x , y ) p(x, y) p(x,y)

4. 平稳分布的定义

π ( x ) \pi(x) π(x) 为定义在状态空间 S S S 上的概率分布。如果 π ( x ) \pi(x) π(x) 满足以下条件:

π ( y ) = ∫ S p ( x , y ) π ( x )   d x , ∀ y ∈ S (19.21) \pi(y) = \int_S p(x, y) \pi(x) \, dx, \quad \forall y \in S \quad \text{(19.21)} π(y)=Sp(x,y)π(x)dx,yS(19.21)

解释
  • 在平稳分布下,从所有可能的状态 x x x 出发,转移到状态 y y y 的总概率密度等于 π ( y ) \pi(y) π(y)
  • 这里的积分表示在连续状态空间上,对所有初始状态 x x x 的加权平均(权重为平稳分布 π ( x ) \pi(x) π(x))。

在平稳分布下,系统在状态 y y y 的概率密度 π ( y ) \pi(y) π(y) 等于从所有可能的起始状态 x x x 出发,通过转移核 p ( x , y ) p(x, y) p(x,y) 转移到状态 y y y 的总概率密度

  • 右侧的积分
  • p ( x , y ) π ( x ) p(x, y) \pi(x) p(x,y)π(x):从状态 x x x 出发转移到状态 y y y 的概率密度,同时考虑初始状态 x x x 的概率密度 π ( x ) \pi(x) π(x)
  • ∫ S p ( x , y ) π ( x )   d x \int_S p(x, y) \pi(x) \, dx Sp(x,y)π(x)dx:对所有可能的起始状态 x x x 进行积分,得到转移到 y y y总概率密度
  • 左侧的 π ( y ) \pi(y) π(y)
  • 在平稳分布下,系统最终处于状态 y y y 的概率密度。

5. 等价条件

平稳分布的等价条件可以写成:

π ( A ) = ∫ S P ( x , A ) π ( x )   d x , ∀ A ⊂ S (19.22) \pi(A) = \int_S P(x, A) \pi(x) \, dx, \quad \forall A \subset S \quad \text{(19.22)} π(A)=SP(x,A)π(x)dx,AS(19.22)

解释
  • π ( A ) \pi(A) π(A):表示平稳分布下,系统处于集合 A A A 的概率;
  • 右侧的积分表示从所有可能的初始状态 x x x 出发,通过转移概率 P ( x , A ) P(x, A) P(x,A) 转移到集合 A A A 的总概率。

换句话说:

  • 平稳分布的概率密度在一次转移后保持不变,整个分布是稳定的。

6. 矩阵形式

当状态空间 S S S 离散化时,上述积分方程可简化为矩阵形式:

π = P π (19.23) \pi = P \pi \quad \text{(19.23)} π=Pπ(19.23)

解释
  • π \pi π:平稳分布向量;
  • P P P:转移概率矩阵(离散情形)或转移核 p ( x , y ) p(x, y) p(x,y) 的离散形式;
  • 这表示平稳分布在转移后的分布仍然是自身,具有自洽性。

总结

  1. 在连续状态空间中,马尔可夫链的转移概率由转移核 p ( x , y ) p(x, y) p(x,y) 定义;
  2. P ( x , A ) P(x, A) P(x,A) 表示从状态 x x x 转移到集合 A A A 的概率;
  3. 平稳分布 π ( x ) \pi(x) π(x) 满足:
    • 平衡条件(积分形式);
    • 转移后的分布保持不变。

这些定义和性质为连续状态马尔可夫链的平稳分布理论奠定了基础,在蒙特卡洛方法、随机过程和物理建模中有重要应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值