19.2.3 连续状态马尔可夫链
连续状态马尔可夫链 X = { X 0 , X 1 , ⋯ , X t , ⋯ } X = \{X_0, X_1, \cdots, X_t, \cdots\} X={X0,X1,⋯,Xt,⋯},随机变量 X t ( t = 0 , 1 , 2 , ⋯ ) X_t(t = 0, 1, 2, \cdots) Xt(t=0,1,2,⋯) 定义在连续状态空间 S S S,转移概率分布由概率转移核或转移核(transition kernel)表示。
设 S S S 是连续状态空间,对于任意的 x ∈ S , A ⊂ S x \in S, A \subset S x∈S,A⊂S,转移核 P ( x , A ) P(x, A) P(x,A) 定义为:
P ( x , A ) = ∫ A p ( x , y ) d y (19.19) P(x, A) = \int_A p(x, y)dy \tag{19.19} P(x,A)=∫Ap(x,y)dy(19.19)
其中, p ( x , ⋅ ) p(x, \cdot) p(x,⋅) 是概率密度函数,满足 p ( x , ⋅ ) ≥ 0 p(x, \cdot) \geq 0 p(x,⋅)≥0; P ( x , S ) = ∫ S p ( x , y ) d y = 1 P(x, S) = \int_S p(x, y)dy = 1 P(x,S)=∫Sp(x,y)dy=1。转移核 P ( x , A ) P(x, A) P(x,A) 表示从 x ∼ A x \sim A x∼A 的转移概率:
P ( X t = A ∣ X t − 1 = x ) = P ( x , A ) (19.20) P(X_t = A | X_{t-1} = x) = P(x, A) \tag{19.20} P(Xt=A∣Xt−1=x)=P(x,A)(19.20)
有时也将概率密度函数 p ( x , ⋅ ) p(x, \cdot) p(x,⋅) 称为转移核。若马尔可夫链的状态空间 S S S 上的概率分布 π ( x ) \pi(x) π(x) 满足条件:
π ( y ) = ∫ p ( x , y ) π ( x ) d x , ∀ y ∈ S (19.21) \pi(y) = \int p(x, y)\pi(x)dx, \quad \forall y \in S \tag{19.21} π(y)=∫p(x,y)π(x)dx,∀y∈S(19.21)
则称分布 π ( x ) \pi(x) π(x) 为该马尔可夫链的平稳分布。等价地,
π ( A ) = ∫ P ( x , A ) π ( x ) d x , ∀ A ⊂ S (19.22) \pi(A) = \int P(x, A)\pi(x)dx, \quad \forall A \subset S \tag{19.22} π(A)=∫P(x,A)π(x)dx,∀A⊂S(19.22)
或简写为:
π = P π (19.23) \pi = P\pi \tag{19.23} π=Pπ(19.23)
1. 问题背景
设马尔可夫链 X = { X 0 , X 1 , … , X t , … } X = \{X_0, X_1, \dots, X_t, \dots \} X={X0,X1,…,Xt,…},其中:
- X t X_t Xt 是定义在连续状态空间 S S S 上的随机变量。
- 转移概率分布通过转移核(Transition Kernel)或转移概率密度函数 p ( x , y ) p(x, y) p(x,y) 表示。
状态空间 S S S:
- S S S 是连续的状态集合,可以理解为实数空间(如 R \mathbb{R} R)或某个连续区间。
2. 转移核的定义
对于任意 x ∈ S x \in S x∈S 和任意状态集合 A ⊂ S A \subset S A⊂S,转移核 P ( x , A ) P(x, A) P(x,A) 定义为:
P ( x , A ) = ∫ A p ( x , y ) d y (19.19) P(x, A) = \int_A p(x, y) \, dy \quad \text{(19.19)} P(x,A)=∫Ap(x,y)dy(19.19)
符号含义:
-
p ( x , y ) p(x, y) p(x,y):从状态 x x x 转移到状态 y y y 的概率密度函数,满足:
- p ( x , y ) ≥ 0 p(x, y) \geq 0 p(x,y)≥0:密度非负;
- ∫ S p ( x , y ) d y = 1 \int_S p(x, y) \, dy = 1 ∫Sp(x,y)dy=1:从状态 x x x 转移到整个状态空间 S S S 的概率为 1 1 1。
-
P ( x , A ) P(x, A) P(x,A):表示从状态 x x x 转移到状态集合 A A A 的转移概率,由 p ( x , y ) p(x, y) p(x,y) 在集合 A A A 上的积分表示。
- y y y 表示连续状态空间 S S S 中的一个具体状态。
- y ∈ A ⊂ S y \in A \subset S y∈A⊂S: y y y 是 A A A 这个集合中的某个具体目标状态。
- 在 P ( x , A ) P(x, A) P(x,A) 的计算中,在目标集合 A A A 上对所有 y y y 的概率密度进行求和(连续情形通过积分实现),求得从状态 x x x 转移到集合 A A A 的总概率。
3. 转移概率性质
给定转移核 P ( x , A ) P(x, A) P(x,A),有如下性质:
P ( X t ∈ A ∣ X t − 1 = x ) = P ( x , A ) (19.20) P(X_t \in A \mid X_{t-1} = x) = P(x, A) \quad \text{(19.20)} P(Xt∈A∣Xt−1=x)=P(x,A)(19.20)
- P ( X t ∈ A ∣ X t − 1 = x ) P(X_t \in A \mid X_{t-1} = x) P(Xt∈A∣Xt−1=x):表示在时刻 t − 1 t-1 t−1 状态为 x x x 时,转移到集合 A A A 的概率;
- 该概率由转移核 P ( x , A ) P(x, A) P(x,A) 描述。
举例说明
假设状态空间 S S S 是实数轴 R \mathbb{R} R,给定一个状态 x x x,目标集合 A = [ a , b ] ⊂ S A = [a, b] \subset S A=[a,b]⊂S。
- p ( x , y ) p(x, y) p(x,y):从状态 x x x 到任意状态 y y y 的转移概率密度。
- P ( x , A ) P(x, A) P(x,A):从 x x x 转移到 A A A 的概率,表示为:
P ( x , A ) = ∫ a b p ( x , y ) d y P(x, A) = \int_a^b p(x, y) \, dy P(x,A)=∫abp(x,y)dy- 通过公式 19.20:
P ( X t ∈ [ a , b ] ∣ X t − 1 = x ) = P ( x , [ a , b ] ) P(X_t \in [a, b] \mid X_{t-1} = x) = P(x, [a, b]) P(Xt∈[a,b]∣Xt−1=x)=P(x,[a,b])
这表明,马尔可夫链从 x x x 出发,在下一步转移到区间 [ a , b ] [a, b] [a,b] 的概率,只取决于当前状态 x x x 和转移核 p ( x , y ) p(x, y) p(x,y)。
4. 平稳分布的定义
令 π ( x ) \pi(x) π(x) 为定义在状态空间 S S S 上的概率分布。如果 π ( x ) \pi(x) π(x) 满足以下条件:
π ( y ) = ∫ S p ( x , y ) π ( x ) d x , ∀ y ∈ S (19.21) \pi(y) = \int_S p(x, y) \pi(x) \, dx, \quad \forall y \in S \quad \text{(19.21)} π(y)=∫Sp(x,y)π(x)dx,∀y∈S(19.21)
解释:
- 在平稳分布下,从所有可能的状态 x x x 出发,转移到状态 y y y 的总概率密度等于 π ( y ) \pi(y) π(y)。
- 这里的积分表示在连续状态空间上,对所有初始状态 x x x 的加权平均(权重为平稳分布 π ( x ) \pi(x) π(x))。
在平稳分布下,系统在状态 y y y 的概率密度 π ( y ) \pi(y) π(y) 等于从所有可能的起始状态 x x x 出发,通过转移核 p ( x , y ) p(x, y) p(x,y) 转移到状态 y y y 的总概率密度。
- 右侧的积分:
- p ( x , y ) π ( x ) p(x, y) \pi(x) p(x,y)π(x):从状态 x x x 出发转移到状态 y y y 的概率密度,同时考虑初始状态 x x x 的概率密度 π ( x ) \pi(x) π(x)。
- ∫ S p ( x , y ) π ( x ) d x \int_S p(x, y) \pi(x) \, dx ∫Sp(x,y)π(x)dx:对所有可能的起始状态 x x x 进行积分,得到转移到 y y y 的总概率密度。
- 左侧的 π ( y ) \pi(y) π(y):
- 在平稳分布下,系统最终处于状态 y y y 的概率密度。
5. 等价条件
平稳分布的等价条件可以写成:
π ( A ) = ∫ S P ( x , A ) π ( x ) d x , ∀ A ⊂ S (19.22) \pi(A) = \int_S P(x, A) \pi(x) \, dx, \quad \forall A \subset S \quad \text{(19.22)} π(A)=∫SP(x,A)π(x)dx,∀A⊂S(19.22)
解释:
- π ( A ) \pi(A) π(A):表示平稳分布下,系统处于集合 A A A 的概率;
- 右侧的积分表示从所有可能的初始状态 x x x 出发,通过转移概率 P ( x , A ) P(x, A) P(x,A) 转移到集合 A A A 的总概率。
换句话说:
- 平稳分布的概率密度在一次转移后保持不变,整个分布是稳定的。
6. 矩阵形式
当状态空间 S S S 离散化时,上述积分方程可简化为矩阵形式:
π = P π (19.23) \pi = P \pi \quad \text{(19.23)} π=Pπ(19.23)
解释:
- π \pi π:平稳分布向量;
- P P P:转移概率矩阵(离散情形)或转移核 p ( x , y ) p(x, y) p(x,y) 的离散形式;
- 这表示平稳分布在转移后的分布仍然是自身,具有自洽性。
总结
- 在连续状态空间中,马尔可夫链的转移概率由转移核 p ( x , y ) p(x, y) p(x,y) 定义;
- P ( x , A ) P(x, A) P(x,A) 表示从状态 x x x 转移到集合 A A A 的概率;
- 平稳分布
π
(
x
)
\pi(x)
π(x) 满足:
- 平衡条件(积分形式);
- 转移后的分布保持不变。
这些定义和性质为连续状态马尔可夫链的平稳分布理论奠定了基础,在蒙特卡洛方法、随机过程和物理建模中有重要应用。