【Seaborn】sns.pairplot() 函数:多变量关系可视化

sns.pairplot() —— 多变量关系可视化(Pair Plot)

seaborn.pairplot() 用于 同时可视化多个变量的两两关系,适用于 探索数据集的整体结构和变量间关系,常用于 EDA(探索性数据分析)


1. 语法

import seaborn as sns

sns.pairplot(data=None, hue=None, kind="scatter", diag_kind="hist", markers=None, palette=None)

主要参数

参数作用
dataDataFrame 数据集
hue按类别分色
kind散点图("scatter")或回归("reg"
diag_kind对角线图类型"hist" 直方图,"kde" 核密度)
markers不同类别点的形状
palette颜色方案

2. 基本示例

2.1 绘制默认 pairplot()

import seaborn as sns
import matplotlib.pyplot as plt

# 加载数据
data = sns.load_dataset("penguins")

# 画成对关系图
sns.pairplot(data=data)

plt.show()

📌 作用

  • 显示所有数值变量的两两关系(散点图)。
  • 对角线部分 显示变量自身分布(默认 diag_kind="hist")。
    在这里插入图片描述

2.2 按类别分色(hue 参数)

sns.pairplot(data=data, hue="species")

plt.show()

📌 作用

  • hue="species"不同物种用不同颜色表示
    在这里插入图片描述

2.3 使用回归(kind="reg"

sns.pairplot(data=data, hue="species", kind="reg")

plt.show()

📌 作用

  • kind="reg" 在散点图中加入回归线
    在这里插入图片描述

2.4 对角线显示 KDE(diag_kind="kde"

sns.pairplot(data=data, hue="species", diag_kind="kde")

plt.show()

📌 作用

  • diag_kind="kde" 对角线使用核密度估计(KDE)
    在这里插入图片描述

3. 进阶用法

3.1 调整点的形状(markers 参数)

sns.pairplot(data=data, hue="species", markers=["o", "s", "D"])

plt.show()

📌 作用

  • markers=["o", "s", "D"]不同类别用不同形状表示
    在这里插入图片描述

3.2 自定义颜色(palette 参数)

sns.pairplot(data=data, hue="species", palette="coolwarm")

plt.show()

📌 作用

  • palette="coolwarm" 改变颜色风格
    在这里插入图片描述

4. sns.pairplot() vs sns.jointplot()

sns.pairplot()sns.jointplot()
作用多个变量的两两关系两个变量的关系
支持 hue 分类
适用于多变量探索单变量对分析

5. 总结

sns.pairplot() 适用于查看多个变量的分布和相互关系
常见参数

  • hue 按类别分色,diag_kind="kde" 对角线 KDEkind="reg" 回归散点图
  • palette="coolwarm" 调整颜色,markers 设置点的形状。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值