seaborn笔记 pairplot PairGrid

1 数据集

鸢尾花数据集

# Visual Python: Data Analysis > File
vp_df = pd.read_csv('https://raw.githubusercontent.com/visualpython/visualpython/main/visualpython/data/sample_csv/iris.csv')
vp_df

 1.1 基本pairplot

import seaborn as sns


g = sns.pairplot(vp_df)
g.fig.set_size_inches(12,12)
#figure大小
sns.set(style='whitegrid',font_scale=3)
#文本大小

 对角线4张图是变量自身的分布直方图;
非对角线的 12 张就是某个变量和另一个变量的关系

 1.2  加上分类变量

g = sns.pairplot(vp_df,
                 hue='variety'#按照三种花分类
                )
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=3)

1.3 palette调色盘

1.3.1 matplotlib cmap颜色 

g = sns.pairplot(vp_df,
                hue='variety',
                palette='Greens',#Matplotlib颜色
                
                )
#sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

1.3.2  手动设置列表

g = sns.pairplot(vp_df,
                hue='variety',
                palette=['green','yellow','blue'],#Matplotlib颜色
                
                )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 1.4 选择某几列进行pairplot

1.4.1 vars x,y 方向选择相同的列

g = sns.pairplot(vp_df,
                 hue='variety',
                 vars=['sepal_length','sepal_width']
                )
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=3)

 1.4.2 xvars yvars xy方向选择不同的列

g = sns.pairplot(vp_df,
                 hue='variety',
                 x_vars=['sepal_length','sepal_width'],
                 y_vars=['petal_length','petal_width']
                )
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=3)

1.5 加回归线

g = sns.pairplot(vp_df,
                hue='variety',
                palette=['green','yellow','blue'],#Matplotlib颜色
                kind='reg'#前面的是 scatter(默认)
                )
#sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 1.6 对角线绘制方式

hist/kde/None

g = sns.pairplot(vp_df,
                hue='variety',
                palette=['green','yellow','blue'],#Matplotlib颜色
                diag_kind='hist'
                )
#sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

1.7 只显示下三角形 corner

g = sns.pairplot(vp_df,
                hue='variety',
                palette=['green','yellow','blue'],#Matplotlib颜色
                corner=True
                )
#sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 ​​​​​​​​​​​

1.8  marker

非对角线点的款式

款式见: ,pairmatplotlib 笔记:marker 款式_UQI-LIUWJ的博客-CSDN博客

g = sns.pairplot(vp_df,
                hue='variety',
                palette=['green','yellow','blue'],#Matplotlib颜色
                markers=['o','P','*']
                )
#sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 

2 PairGrid

2.1 每个子图绘制同类型的图

g = sns.PairGrid(vp_df, 
                 hue='variety',
                 palette='husl',)
g = g.map(plt.scatter)#map每个子图绘制一样类型的图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 2.2 对角线和非对角线会不不同类型的图

g = sns.PairGrid(vp_df, 
                 hue='variety',
                 palette='husl',)
g=g.map_diag(plt.hist)
#对角线绘制直方图
g = g.map_offdiag(plt.scatter)
#非对角线绘制散点图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 2.3  对角线上方、下方、对角线绘制不同类型图

g = sns.PairGrid(vp_df, 
                 hue='variety',
                 palette='husl',)
g=g.map_upper(plt.scatter)
#对角线上方绘制散点图
g = g.map_diag(sns.kdeplot)
#对角线绘制核密度图
g=g.map_lower(sns.kdeplot)
#对角线下方绘制核密度图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值