【Seaborn】sns.stripplot() 函数:分类数据的散点分布

sns.stripplot() —— 分类数据的散点分布(Strip Plot)

seaborn.stripplot() 用于显示分类数据的散点分布,适用于 数据离散度、分布模式、类别间对比


1. 语法

import seaborn as sns

sns.stripplot(data=None, x=None, y=None, hue=None, jitter=True, dodge=False, size=5, alpha=None)

主要参数

参数作用
data数据集(pandas.DataFrame
x分类变量(类别列)
y数值变量(连续值)
hue按类别分色
jitter是否增加抖动(防止点重叠,默认 True
dodgehue 存在时,是否分开显示(默认 False
size点的大小(默认 5
alpha透明度(0-1,用于减少重叠影响)

2. 基本示例

2.1 画分类散点图

import seaborn as sns
import matplotlib.pyplot as plt

# 加载数据
data = sns.load_dataset("titanic")

# 绘制分类散点图
sns.stripplot(data=data, x="class", y="age")

plt.title("Age Distribution by Class")
plt.show()

📌 作用

  • x="class"类别(头等舱/二等舱/三等舱)
  • y="age"数值变量(年龄)
    在这里插入图片描述

2.2 增加抖动(jitter=True

sns.stripplot(data=data, x="class", y="age", jitter=True)

plt.show()

📌 作用

  • jitter=True 避免数据点重叠,提高可读性
    在这里插入图片描述

2.3 按类别着色(hue 参数)

sns.stripplot(data=data, x="class", y="age", hue="sex")

plt.show()

📌 作用

  • hue="sex"不同性别用不同颜色表示
    在这里插入图片描述

2.4 增加透明度(alpha 参数)

sns.stripplot(data=data, x="class", y="age", hue="sex", alpha=0.5)

plt.show()

📌 作用

  • alpha=0.5 减少数据点重叠的影响
    在这里插入图片描述

3. 进阶用法

3.1 调整点大小(size 参数)

sns.stripplot(data=data, x="class", y="age", size=8)

plt.show()

📌 作用

  • size=8 增大数据点,适用于小数据集
    在这里插入图片描述

3.2 结合 dodge=True(分开不同 hue 类别)

sns.stripplot(data=data, x="class", y="age", hue="sex", dodge=True)

plt.show()

📌 作用

  • dodge=True 让不同 hue 类别的点分开
    在这里插入图片描述

3.3 横向展示(orient="h"

sns.stripplot(data=data, x="age", y="class", orient="h")

plt.show()

📌 作用

  • orient="h" 横向展示数据
    在这里插入图片描述

4. sns.stripplot() vs sns.swarmplot()

sns.stripplot()sns.swarmplot()
作用分类散点图避免重叠的分类散点图
适用场景大数据集(允许重叠)小数据集(防止重叠)
sns.swarmplot(data=data, x="class", y="age", hue="sex")

plt.show()

📌 推荐

  • 大数据集sns.stripplot()
  • 避免重叠sns.swarmplot()
    在这里插入图片描述

5. 总结

sns.stripplot() 适用于分类数据的散点分布分析,支持 抖动、透明度、分组显示
常见参数

  • hue 分类着色jitter=True 增加抖动alpha=0.5 减少重叠
  • dodge=True 分开不同类别size=8 调整点大小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值