【LangChain】langchain_core.embeddings.Embeddings 类:定义文本嵌入模型的抽象基类

langchain_core.embeddings.Embeddings 是 LangChain 框架中的一个核心抽象基类,用于定义文本嵌入模型的标准化接口,支持将文本映射为高维向量以便进行语义搜索、文档检索等任务。本文详细介绍其功能、方法、参数、使用方法、实际应用及注意事项。

1. 概述

1.1 什么是 Embeddings

Embeddings 是一个抽象基类,位于 langchain_core.embeddings 模块,继承自 Python 的 ABC(抽象基类)。它为各种文本嵌入模型(如 OpenAI、Hugging Face、Cohere 等)提供统一的接口,确保不同提供商的嵌入模型在 LangChain 生态系统中可以互换使用。嵌入(embeddings)是将文本映射到高维向量空间的表示,语义相似的文本在空间中更接近,便于语义比较和搜索。

该类在 langchain-core 0.2.14 版本中引入,广泛应用于向量存储、检索链和记忆模块,是 LangChain 中实现语义搜索和上下文增强的关键组件。相关信息可参考 LangChain 嵌入模型文档Embeddings API 参考

1.2 核心功能

  • 标准化接口:为嵌入模型提供统一接口,支持不同提供商(如 OpenAI、Hugging Face)的模型。
  • 文本向量化:将文本映射为高维向量,语义相似的文本在向量空间中靠近。
  • 文档与查询分离:提供 embed_documentsembed_query 方法,分别嵌入文档和查询,允许不同嵌入策略。
  • 同步与异步支持:支持同步(embed_documentsembed_query)和异步(aembed_documentsaembed_query)操作,满足性能需求。
  • 生态集成:与 LangChain 的向量存储(如 FAISS、Pinecone)、检索链和记忆模块无缝集成。
  • 版本要求:需 langchain-core>=0.2.14,推荐使用最新版本。

2. 定义与结构

2.1 类定义

Embeddings 是一个抽象基类,定义如下(简化表示):

from abc import ABC
from typing import List

class Embeddings(ABC):
    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        pass

    def embed_query(self, text: str) -> List[float]:
        pass

    async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
        pass

    async def aembed_query(self, text: str) -> List[float]:
        pass

2.2 核心方法

以下是 Embeddings 类的核心方法,基于 API 参考:

方法签名描述
embed_documentsembed_documents(self, texts: List[str]) -> List[List[float]]同步嵌入文档列表,返回每个文档的嵌入向量列表。
embed_queryembed_query(self, text: str) -> List[float]同步嵌入单个查询文本,返回其嵌入向量。
aembed_documentsaembed_documents(self, texts: List[str]) -> List[List[float]]异步嵌入文档列表,返回每个文档的嵌入向量列表。
aembed_queryaembed_query(self, text: str) -> List[float]异步嵌入单个查询文本,返回其嵌入向量。

参数

  • textsList[str],要嵌入的文本列表(用于文档)。
  • textstr,要嵌入的单个文本(用于查询)。

返回值

  • embed_documentsaembed_documentsList[List[float]],每个文档的嵌入向量。
  • embed_queryaembed_queryList[float],查询的嵌入向量。

2.3 初始化

Embeddings 本身是抽象类,无初始化参数。具体子类(如 OpenAIEmbeddings)可能有额外参数,例如:

  • model:模型名称(如 "text-embedding-3-large")。
  • api_key:API 密钥,用于认证。
  • dimensions:嵌入向量维度(若模型支持)。

3. 使用方法

使用 Embeddings 类需通过实例化其具体子类(如 OpenAIEmbeddingsHuggingFaceEmbeddings)。以下是具体示例:

3.1 基本用法

使用 OpenAIEmbeddings 嵌入文档和查询:

from langchain_openai import OpenAIEmbeddings

# 初始化嵌入模型
embeddings = OpenAIEmbeddings(model="text-embedding-3-large", api_key="your-api-key")

# 嵌入文档列表
docs = ["你好,世界!", "你好吗?"]
doc_embeddings = embeddings.embed_documents(docs)
print(doc_embeddings)  # 输出: [[0.1, 0.2, ...], [0.3, 0.4, ...]]

# 嵌入查询
query = "你的名字是什么?"
query_embedding = embeddings.embed_query(query)
print(query_embedding)  # 输出: [0.5, 0.6, ...]

3.2 异步嵌入

使用异步方法嵌入文本:

import asyncio
from langchain_openai import OpenAIEmbeddings

async def embed_async():
    embeddings = OpenAIEmbeddings(model="text-embedding-3-large", api_key="your-api-key")
    docs = ["你好,世界!", "你好吗?"]
    doc_embeddings = await embeddings.aembed_documents(docs)
    query = "你的名字是什么?"
    query_embedding = await embeddings.aembed_query(query)
    print(doc_embeddings, query_embedding)

asyncio.run(embed_async())

3.3 结合向量存储

将嵌入与向量存储(如 FAISS)结合,用于语义搜索:

from langchain.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

# 初始化嵌入模型
embeddings = OpenAIEmbeddings(model="text-embedding-3-large", api_key="your-api-key")

# 创建向量存储
vectorstore = FAISS.from_texts(["你好,世界!", "你好吗?"], embeddings)

# 搜索相似文档
results = vectorstore.similarity_search("你好", k=1)
print(results)  # 输出: [Document(page_content="你好,世界!", ...)]

3.4 结合 RAG 应用

在检索增强生成(RAG)中嵌入查询和文档:

from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.vectorstores import FAISS

# 初始化嵌入模型和向量存储
embeddings = OpenAIEmbeddings(model="text-embedding-3-large", api_key="your-api-key")
vectorstore = FAISS.from_texts(["LangChain 是一个 LLM 框架"], embeddings)

# 创建 RAG 链
prompt = ChatPromptTemplate.from_template("根据以下文档回答问题:\n{docs}\n问题:{question}")
chain = (
    {"docs": vectorstore.as_retriever() | (lambda docs: "\n".join(doc.page_content for doc in docs)), "question": RunnablePassthrough()}
    | prompt
    | ChatOpenAI()
)

# 调用链
result = chain.invoke("LangChain 是什么?")
print(result)

3.5 自定义嵌入模型

继承 Embeddings 实现自定义模型:

from langchain_core.embeddings import Embeddings
import numpy as np

class CustomEmbeddings(Embeddings):
    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        # 假设的嵌入逻辑
        return [np.random.rand(128).tolist() for _ in texts]

    def embed_query(self, text: str) -> List[float]:
        # 假设的查询嵌入
        return np.random.rand(128).tolist()

custom_embeddings = CustomEmbeddings()
docs = ["你好,世界!"]
doc_embeddings = custom_embeddings.embed_documents(docs)
print(doc_embeddings)

4. 实际应用

Embeddings 类在以下场景中广泛应用:

  • 语义搜索:嵌入文档和查询,计算余弦相似度,检索最相关文档。
  • 向量存储:为向量存储(如 FAISS、Pinecone)生成嵌入向量,支持高效索引和搜索。
  • RAG 应用:在检索增强生成中,嵌入查询检索上下文文档,增强模型生成。
  • 记忆模块:存储嵌入表示的对话历史或上下文,便于后续召回。
  • 文本分类与聚类:使用嵌入向量进行文本分类或聚类分析。
  • 自定义嵌入:通过继承 Embeddings 支持本地或自定义嵌入模型。

5. 最佳实践

  • 选择合适的嵌入模型:根据任务需求选择模型,如 OpenAI 的 text-embedding-3-large(高性能)或 Hugging Face 的 sentence-transformers(开源)。参考 LangChain 嵌入模型集成
  • 异步优化:在高并发场景下使用 aembed_documentsaembed_query,减少阻塞。
  • 批量处理:优先使用 embed_documents 批量嵌入,降低 API 调用次数。
  • API 密钥管理:通过环境变量(如 OPENAI_API_KEY)设置密钥,避免硬编码。
  • 向量维度匹配:确保嵌入模型的维度与向量存储或下游任务兼容。
  • 版本检查:通过 pip install -qU langchain 确保安装 langchain-core>=0.2.14
  • 调试工具:使用 LangSmith 跟踪嵌入操作,调试复杂链或检索问题。

6. 注意事项与限制

  • 抽象基类Embeddings 无法直接实例化,需使用具体子类(如 OpenAIEmbeddings)。
  • API 依赖:子类可能需要 API 密钥(如 OpenAI 的),需配置环境变量或参数。
  • 性能开销:嵌入大量文档可能导致高延迟或成本,需优化批量处理。
  • 模型限制:不同模型支持的文本长度和语言范围不同,需测试适用性。
  • 模块路径:确保正确导入 langchain_core.embeddings.Embeddings
  • 版本依赖:功能可能受版本限制,需确保兼容最新版本。

7. 结论

langchain_core.embeddings.Embeddings 是 LangChain 框架中用于定义文本嵌入模型标准接口的抽象基类,通过 embed_documentsembed_query 方法支持文本向量化,广泛应用于语义搜索、向量存储和 RAG 应用。其统一接口和异步支持确保了不同嵌入模型的互换性和高效性。结合具体子类(如 OpenAIEmbeddings)、向量存储和 LangChain 生态系统,开发者可以构建强大的语义处理系统。遵循最佳实践并注意版本要求,将有助于充分发挥其功能。

8. 参考资料

<think>好的,我现在需要帮助用户了解如何将生成的图数据存储到Neo4j数据库中,特别是使用Neo4jGraph或Neo4jVector这两个工具。首先,我得确认用户的需求是什么。用户可能已经生成了图数据,现在需要将这些数据导入到Neo4j中,但可能不清楚具体步骤和工具的使用方法。 首先,我应该回想一下Neo4j的基本操作。Neo4j是一个图数据库,通常使用Cypher查询语言来操作数据。用户提到的Neo4jGraph和Neo4jVector可能是指某些库或工具,用于简化与Neo4j的交互。例如,在Python中,可能有相关的库如py2neo或官方提供的neo4j驱动,但用户提到的这两个名称可能属于特定的框架,比如LangChain中的组件?因为我知道LangChain有Neo4jGraph和Neo4jVector的集成,用于处理知识图谱和向量嵌入。 接下来,我需要确定用户使用的是哪种编程语言和环境。假设是Python,因为Neo4jGraph和Neo4jVector常见于Python生态中。用户可能已经通过某种方式生成了图数据,比如节点和关系,现在需要将这些数据存储到Neo4j中。 首先,用户需要安装必要的库。比如,安装langchain库,或者直接使用neo4j的Python驱动。可能需要同时安装几个包,比如langchain_community中的相关模块,或者neo4j的官方驱动。 然后,用户需要连接到Neo4j数据库。这通常需要URI、用户名和密码。需要确保Neo4j实例正在运行,并且用户有正确的访问权限。 接下来,使用Neo4jGraph来存储图数据。这里可能需要将节点和关系转换成Cypher语句,或者利用库提供的API来添加数据。比如,使用add_graph方法,或者通过执行Cypher命令来创建节点和关系。 对于Neo4jVector,这可能涉及到将向量数据存储到Neo4j中,用于支持向量搜索。比如,存储文本的嵌入向量,并建立索引以便进行相似性搜索。这可能需要使用特定的方法,如from_existing_graph来从现有图结构中创建向量索引,或者from_texts来直接导入文本和向量。 在步骤中,可能需要示例代码来说明如何连接数据库、创建图对象、添加数据以及关闭连接。同时,需要注意异常处理和资源释放,比如正确关闭驱动连接。 此外,用户可能需要了解如何验证数据是否成功导入,比如在Neo4j浏览器中执行MATCH查询来检查节点和关系是否存在。 还需要考虑性能优化,比如批量插入数据而不是逐条插入,以提高效率。同时,索引的创建对于查询性能也很重要,特别是当处理大规模数据时。 最后,用户可能会有疑问,比如如何处理复杂的图结构,或者如何将现有数据转换为适合Neo4j的格式。可能需要提醒用户确保数据模型的正确性,节点和关系的属性是否合理,以及是否需要建立索引或约束来优化查询。 总结一下,回答应该包括以下几个部分: 1. 环境准备:安装必要的库和配置Neo4j连接。 2. 使用Neo4jGraph存储图结构数据,包括节点和关系。 3. 使用Neo4jVector存储向量数据,支持向量搜索。 4. 示例代码和验证步骤。 5. 注意事项和常见问题。</think>以下是使用$Neo4jGraph$和$Neo4jVector$存储图数据到Neo4j数据库的分步指南: ### 一、环境准备 1. 安装Python依赖库: ```bash pip install neo4j langchain langchain-community ``` 2. 启动Neo4j数据库并获取连接信息: - 默认URI:$bolt://localhost:7687$ - 用户名/密码:$neo4j/your_password$ ### 二、使用Neo4jGraph存储图结构 ```python from langchain_community.graphs import Neo4jGraph # 创建连接 graph = Neo4jGraph( url="bolt://localhost:7687", username="neo4j", password="your_password" ) # 定义图数据(节点+关系) cypher_query = ''' CREATE (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'}), (a)-[:FRIEND]->(b) ''' # 执行写入操作 graph.query(cypher_query) # 验证数据 result = graph.query("MATCH (p:Person) RETURN p.name") print(result) # 输出[{'p.name': 'Alice'}, {'p.name': 'Bob'}] # 关闭连接 graph.driver.close() ``` ### 三、使用Neo4jVector存储向量数据 ```python from langchain_community.vectorstores import Neo4jVector from langchain_openai import OpenAIEmbeddings # 创建向量存储 vector_store = Neo4jVector.from_texts( texts=["机器学习导论", "图数据库原理"], embedding=OpenAIEmbeddings(), url="bolt://localhost:7687", username="neo4j", password="your_password", index_name="knowledge_base", node_label="Document" ) # 执行向量搜索 results = vector_store.similarity_search("人工智能基础") print(results[0].page_content) # 输出"机器学习导论" ``` ### 四、最佳实践 1. 批量写入优化:使用$UNWIND$语句实现批量插入 ```cypher UNWIND $batch AS row CREATE (n:Node {id: row.id}) ``` 2. 索引加速:创建索引提高查询性能 ```python graph.query("CREATE INDEX FOR (n:Person) ON (n.name)") ``` 3. 数据验证:通过Neo4j Browser执行$MATCH (n) RETURN n LIMIT 25$可视化验证
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值