傅里叶光学(三) 狄拉克与高斯函数

本文深入探讨傅里叶光学中狄拉克delta函数与高斯函数的应用,通过1D模拟展示其在光学领域的理论与实践。引用了《傅里叶光学》吕乃光及http://www.johnloomis.org/eop513/notes/的相关资料。
摘要由CSDN通过智能技术生成
%GAUS exp(-pi*x.*x) function.
[x,y]=meshgrid(linspace(-4,4,250));
r=sqrt(x.^2+y.^2);
z1=gaus(r);% gaus function


z2=gaus((r-3)/0.2);%ring delta function


z3=gaus((r-3)/3); 
z4=gaus(r/0.2); %2d delta function
subplot(2,2,1),mysurf(x,y,z1);title('gaus function');% gaussian function 
subplot(2,2,2),mysurf(x,y,z2);title('ring delta function');% r-3 除以0.2 以后,值比较大,代入gaus 函数 x.^2 
%之后在非r=3 的地方衰减非常快,所以可以看做是环r=3 的狄拉克函数
subplot(2,2,3),mysurf(x,y,z3);title('no name ');
subplot(2,2,4),mysurf(x,y,z4); title(' 2D delta function'); 




% composite function example
% comb(x)=pi*delta(sin(pi*x))
%we use gaus to simulate delta function
x2=linspace(-2,2,400);
y2=gaus(sin(pi*x2)/0.2); %1D delta function
figure,plot(x2,y2)

function y=gaus(x)
%GAUS exp(-pi*x.*x) function.
%       
y=exp(-pi*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值