【向量数据库 pymilvus】Milvus Standalone(单机模式)如何安装

在龙晰操作系统(CentOS 8)上安装 Milvus Standalone(单机模式)而不使用 Docker,可以按照以下步骤进行。以下是一个详细的安装指南:


1. 环境准备

在开始安装之前,确保系统满足以下要求:

  • 操作系统:CentOS 8(龙晰操作系统基于 CentOS 8)。
  • 硬件要求
    • CPU:支持 AVX 指令集(推荐 Intel Haswell 或更高版本)。
    • 内存:至少 8 GB(建议 16 GB 或更高)。
    • 磁盘:SSD 磁盘,至少 50 GB 可用空间。
  • 依赖项
    • Python 3.8 或更高版本。
    • GCC 7 或更高版本。
    • CMake 3.18 或更高版本。

2. 安装依赖项

2.1 更新系统

sudo dnf update -y

2.2 安装 GCC 和 CMake

sudo dnf install -y gcc gcc-c++ make cmake

2.3 安装 Python 3.8

如果系统未安装 Python 3.8,可以通过以下步骤安装:

sudo dnf install -y python38 python38-devel
sudo alternatives --set python3 /usr/bin/python3.8

2.4 安装其他依赖项

sudo dnf install -y openssl-devel libcurl-devel zlib-devel

3. 下载 Milvus Standalone

3.1 下载 Milvus 二进制包

从 Milvus 的 GitHub Releases 页面下载最新版本的二进制包:

wget https://github.com/milvus-io/milvus/releases/download/v2.3.3/milvus-standalone-linux-amd64.tar.gz

3.2 解压二进制包

tar -xzf milvus-standalone-linux-amd64.tar.gz
cd milvus-standalone-linux-amd64

4. 配置 Milvus

4.1 修改配置文件

Milvus 的配置文件位于 conf/standalone.yaml。你可以根据需要修改以下参数:

  • 存储路径:设置数据存储路径(确保路径有足够的磁盘空间)。
    storage:
      path: /path/to/milvus/data
    
  • 缓存大小:根据内存大小调整缓存。
    cache:
      cache_size: 4GB
    

4.2 创建数据存储目录

sudo mkdir -p /path/to/milvus/data
sudo chown -R $USER:$USER /path/to/milvus/data

5. 启动 Milvus

5.1 启动 Milvus 服务

在解压后的 Milvus 目录中运行以下命令:

./bin/milvus run

5.2 验证服务状态

Milvus 默认监听端口为 19530。你可以通过以下命令检查服务是否正常运行:

curl http://localhost:19530/version

如果返回类似以下内容,说明 Milvus 已成功启动:

{"version":"2.3.3"}

6. 使用 Milvus

6.1 安装 PyMilvus

Milvus 提供了 Python SDK(PyMilvus),可以通过以下命令安装:

pip install pymilvus

6.2 连接 Milvus

在 Python 中连接 Milvus:

from pymilvus import connections

connections.connect("default", host="localhost", port="19530")

6.3 创建集合和插入数据

以下是一个简单的示例:

from pymilvus import CollectionSchema, FieldSchema, DataType, Collection

# 定义集合结构
fields = [
    FieldSchema(name="id", dtype=DataType.INT64, is_primary=True),
    FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128)
]
schema = CollectionSchema(fields, "example_collection")

# 创建集合
collection = Collection("example_collection", schema)

# 插入数据
data = [
    [1, 2, 3],  # ID
    [[0.1, 0.2, ...], [0.3, 0.4, ...], [0.5, 0.6, ...]]  # 向量数据
]
collection.insert(data)

7. 性能优化

7.1 使用 SSD 磁盘

确保 Milvus 的数据存储路径位于 SSD 磁盘上,以提升 I/O 性能。

7.2 调整缓存大小

根据系统内存大小,适当增加 cache.cache_size 参数,确保缓存足够容纳全部数据。

7.3 预加载索引

在插入数据后,立即创建索引并预加载到内存中:

collection.create_index("embedding", {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 128}})
collection.load()

8. 总结

通过以上步骤,你可以在龙晰操作系统(CentOS 8)上成功安装和运行 Milvus Standalone(单机模式)。如果需要进一步优化性能,可以参考 Milvus 的官方文档或社区资源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东华果汁哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值