每日一题/015/tr(AB)=tr(BA)/反对称矩阵的充要条件/如果 AA‘=-A^2,那么是反对称矩阵

题目:
证明 A \boldsymbol{A} A 是反对称矩阵的充要条件是 A A ′ = − A 2 \boldsymbol{AA}'=-\boldsymbol{A}^2 AA=A2


参考答案:

必要性显然
先介绍两个引理,然后再给出充分性的证明

引理一:

t r ( A B ) = t r ( B A ) \mathrm{tr}(\boldsymbol{AB})=\mathrm{tr}(\boldsymbol{BA}) tr(AB)=tr(BA)

证明:

( A B ) i i = ∑ j = 1 n a i j b j i (\boldsymbol{AB})_{ii}=\sum_{j=1}^na_{ij}b_{ji}\\ (AB)ii=j=1naijbji

t r ( A B ) = ∑ i = 1 n ( A B ) i i = ∑ i = 1 n ∑ j = 1 n a i j b j i \mathrm{tr}(\boldsymbol{AB})=\sum_{i=1}^n(\boldsymbol{AB})_{ii}=\sum_{i=1}^n\sum_{j=1}^na_{ij}b_{ji} tr(AB)=i=1n(AB)ii=i=1nj=1naijbji

同理

t r ( B A ) = ∑ i = 1 n ( B A ) i i = ∑ i = 1 n ∑ j = 1 n b i j a j i = ∑ i = 1 n ∑ j = 1 n a j i b i j = ∑ j = 1 n ∑ i = 1 n a i j b j i = ∑ i = 1 n ∑ j = 1 n a i j b j i = t r ( A B ) \begin{aligned} \mathrm{tr}(\boldsymbol{BA})=\sum_{i=1}^n(\boldsymbol{BA})_{ii}&=\sum_{i=1}^n\sum_{j=1}^nb_{ij}a_{ji}\\ &=\sum_{i=1}^n\sum_{j=1}^na_{ji}b_{ij}\\ &=\sum_{j=1}^n\sum_{i=1}^na_{ij}b_{ji}\\ &=\sum_{i=1}^n\sum_{j=1}^na_{ij}b_{ji}=\mathrm{tr}(\boldsymbol{AB}) \end{aligned} tr(BA)=i=1n(BA)ii=i=1nj=1nbijaji=i=1nj=1najibij=j=1ni=1naijbji=i=1nj=1naijbji=tr(AB)
证毕

引理二:

矩阵 A \boldsymbol{A} A 为对称矩阵,且 A 2 = 0 \boldsymbol{A}^2=0 A2=0,那么 A = 0 \boldsymbol{A}=\boldsymbol{0} A=0

证明:

( A 2 ) i i = ∑ j = 1 n a i j a j i = ∑ j = 1 n a i j 2 = 0 (\boldsymbol{A}^2)_{ii}=\sum_{j=1}^na_{ij}a_{ji}=\sum_{j=1}^na_{ij}^2=0 (A2)ii=j=1naijaji=j=1naij2=0

这说明 A \boldsymbol{A} A 的第 i i i 行都为零,继而得到 A \boldsymbol{A} A 的每一行都为零,从而 A = 0 \boldsymbol{A}=\boldsymbol{0} A=0

下面我们再来证明原命题的充分性

因为 A 2 = − A A ′ \boldsymbol{A}^2=-\boldsymbol{AA}' A2=AA,两边取转置,得到 A ′ 2 = − A A ′ \boldsymbol{A}'^2=-\boldsymbol{AA}' A2=AA

( A + A ′ ) 2 = A 2 + A ′ 2 + A A ′ + A ′ A = − A A ′ − A A ′ + A A ′ + A ′ A = A ′ A − A A ′ \begin{aligned} (\boldsymbol{A}+\boldsymbol{A}')^2&=\boldsymbol{A}^2+\boldsymbol{A}'^2+\boldsymbol{A}\boldsymbol{A}'+\boldsymbol{A}'\boldsymbol{A}\\ &=-\boldsymbol{A}\boldsymbol{A}'-\boldsymbol{A}\boldsymbol{A}'+\boldsymbol{A}\boldsymbol{A}'+\boldsymbol{A}'\boldsymbol{A}\\ &=\boldsymbol{A}'\boldsymbol{A}-\boldsymbol{A}\boldsymbol{A}' \end{aligned} (A+A)2=A2+A2+AA+AA=AAAA+AA+AA=AAAA

t r ( ( A + A ′ ) 2 ) = t r ( A ′ A − A A ′ ) = t r ( A ′ A ) − t r ( A A ′ ) = 0 \begin{aligned} \mathrm{tr}\left((\boldsymbol{A}+\boldsymbol{A}')^2\right)&=\mathrm{tr}(\boldsymbol{A}'\boldsymbol{A}-\boldsymbol{A}\boldsymbol{A}')\\ &=\mathrm{tr}(\boldsymbol{A}'\boldsymbol{A})-\mathrm{tr}(\boldsymbol{A}\boldsymbol{A}')=0 \end{aligned} tr((A+A)2)=tr(AAAA)=tr(AA)tr(AA)=0

最后一步是根据引理一得到的

又因为 B = ( A + A ′ ) \boldsymbol{B}=(\boldsymbol{A}+\boldsymbol{A}') B=(A+A) 是对称矩阵, t r ( B 2 ) = 0 \mathrm{tr}(\boldsymbol{B}^2)=0 tr(B2)=0,所以 B = 0 \boldsymbol{B}=\boldsymbol{0} B=0,所以 A = − A ′ \boldsymbol{A}=-\boldsymbol{A}' A=A, A \boldsymbol{A} A 为反对称矩阵

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
这段代码是针对单片机的定时器T0进行配置和启动的操作。具体解释如下: 1. TMOD=0X11; //定时器T0工作方式1 TMOD是单片机中的定时器模式寄存器,其中的高4位是用来设置定时器T1的工作方式,低4位是用来设置定时器T0的工作方式。这里TMOD=0x11表示设置定时器T0的工作方式为模式1,即16位定时器模式。 2. a=-50000; //计数初值 a是用来存储定时器T0的初值,-50000是初值的具体数值。这里将a设置为负数是因为在16位模式下,定时器初值是通过将高8位和低8位分别存储在TH0和TL0寄存器中实现的,因此需要将初值转化为有符号数。 3. TH0=a/256; //高八位 TH0是定时器T0的高8位寄存器,用来存储定时器的高8位初值。这里将a/256得到的商存储在TH0中,即将a的高8位存储在TH0中。 4. TL0=a%256; //低八位 TL0是定时器T0的低8位寄存器,用来存储定时器的低8位初值。这里将a%256得到的余数存储在TL0中,即将a的低8位存储在TL0中。 5. ET0=1; //允许定时器T0中断 ET0是定时器T0的中断允许寄存器,用来控制定时器T0是否允许产生中断。这里将ET0设置为1,即允许定时器T0产生中断。 6. EA=1; //总中断允许 EA是单片机的总中断允许寄存器,用来控制是否允许所有中断。这里将EA设置为1,即允许所有中断。 7. TR0=1; //启动定时器T0 TR0是定时器T0的启动控制寄存器,用来控制是否启动定时器T0。这里将TR0设置为1,即启动定时器T0开始计时。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值