计算机视觉五大技术:(图像分类、对象检测、目标跟踪、语义分割和实例分割)的通俗解释

详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割

本篇博客只考虑与人工智能相关的图像技术,其他领域比如光学、成像等不考虑。

 

前人对计算机视觉的定义:

  • “对图像中的客观对象构建明确而有意义的描述”(Ballard&Brown,1982)
  • “从一个或多个数字图像中计算三维世界的特性”(Trucco&Verri,1998)
  •  “基于感知图像做出对客观对象和场景有用的决策”(Sockman&Shapiro,2001)

 

计算机视觉的应用领域:

  • 人脸识别:比如人脸登录和扫脸支付。
  • 图像检索:根据输入的内容来搜索相关的图片,比如百度搜索丝袜美女。
  • 游戏和控制:基于微软 Kinect的体感游戏,VR游戏等。
  • 监测:用于监测可疑行为的监视摄像头遍布于各大公共场所中,比如天网或者行人闯红灯等。
  • 生物识别技术:指纹、虹膜和人脸匹配仍然是生物识别领域的一些常用方法。
  • 智能汽车:计算机视觉仍然是检测交通标志、灯光和其他视觉特征的主要信息来源。

一、图像分类

比如,手写体识别,识别出图片中的数字是多少。

 

二 、对象检测

识别图像中的对象,涉及到为各个对象输出边界框和标签。通俗来说,就是为图像中的对象画框框。

 

三 、 目标跟踪

目标跟踪,是指在特定场景跟踪某一个或多个特定感兴趣对象的过程。

 

四、语义分割

将整个图像分成一个个像素组,然后对其进行标记和分类。语义分割试图在语义上理解图像中每个像素的角色(比如,识别它是汽车、摩托车还是其他的类别)。

 

五 、实例分割

实例分割将不同类型的实例进行分类,比如用 5 种不同颜色来标记 5 辆汽车。分割实例时,会看到多个重叠物体和不同背景的复杂景象,我们不仅需要将这些不同的对象进行分类,而且还要确定对象的边界、差异和彼此之间的关系!

 

 

修改自:AI科技大本营(公众号ID:rgznai100)https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/80016353?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D感知巨头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值