Hugging Face公司和模型测评榜单简单介绍

Hugging Face 是一家总部位于纽约的初创公司,成立于2016年。该公司以其在自然语言处理(NLP)领域的贡献而闻名,特别是在开发开源库和模型方面。Hugging Face 提供了一个名为 Transformers 的开源库,这个库为开发者和研究人员提供了一系列预训练模型,以及用于训练和微调这些模型的工具。Transformers 库支持多种编程语言,包括 Python,并且非常易于使用,这使得它成为了 NLP 领域最受欢迎的库之一。
Hugging Face 的另一个重要贡献是模型测评榜单(Model Evaluation Leaderboard)。这个榜单提供了一个公正、透明的平台,用于比较和评估不同模型在特定任务上的性能。模型测评榜单涵盖了多种 NLP 任务,如文本分类、机器翻译、问答系统等。每个任务都有一个排行榜,展示了在该任务上表现最佳的模型及其性能指标。
榜单上的模型通常都是基于 Transformer 架构的,这些模型包括 BERT、GPT-2、RoBERTa、T5 等。这些模型在多个 NLP 数据集上进行了预训练,并在特定的任务上进行了微调,以达到最佳性能。模型测评榜单不仅展示了模型的性能,还提供了模型的详细信息和下载链接,使得研究人员和开发者能够轻松地复现和使用这些模型。
Hugging Face 的模型测评榜单对于推动 NLP 领域的研究和行业发展具有重要意义。它鼓励了开放科学和合作,使得研究人员能够共享和比较他们的研究成果。同时,它也为开发者和企业提供了一个可靠的资源,帮助他们选择适合自己需求的模型。
下面就测评指标简单介绍一下:

1. MMLU(多任务学习)
MMLU是多任务学习的缩写,它是一种神经网络训练方法,用于同时训练模型在多个任务上的表现。MMLU通过将多个任务视为一个整体来训练神经网络,从而提高模型的泛化能力。在图像识别、自然语言处理等领域,MMLU已经成为评估模型性能的一个重要指标。
2. C-Eval(分类评价)
C-Eval是分类评价的缩写,它主要用于评估机器学习模型的分类准确性。C-Eval通常包括准确率、召回率、F1分数等度量标准,用于衡量模型对不同类别数据的预测性能。
3. GSM8K(全球语音识别挑战赛8k数据集)
GSM8K是全球语音识别挑战赛8k数据集的缩写,它是一个大规模的中文语音识别数据集。GSM8K包含了多种场景下的语音样本,如电话、广播、电视等,为语音识别和语音处理的研究提供了宝贵的资源。
4. MATH(数学题)
MATH是数学题任务的缩写,它主要评估模型解决数学问题的能力。MATH任务通常包括加法、减法、乘法、除法等基础数学运算,以及更复杂的数学问题,如代数方程、几何证明等。
5. HumanEval(人类评估)
HumanEval是人类评估的缩写,它旨在评估模型在理解并执行人类指令方面的能力。HumanEval任务通常包括对话理解、文本摘要、情感分析等,旨在衡量模型在模拟人类交互和理解方面的发展水平。
6. MBP(多任务边界概率)
MBP是多任务边界概率的缩写,它主要评估模型在多个任务之间转移知识的能力。MBP任务通常涉及在给定上下文的情况下,模型需要同时完成多个任务,如在图像中检测物体和在文本中找到关键词等。
7. BBH(基于边界框的图像分割)
BBH是基于边界框的图像分割的缩写,它主要评估模型对图像中的物体进行精确分割的能力。BBH任务通常要求模型能够识别图像中的各个物体,并将其划分为不同的区域,如前景、背景、人物、物体等。
8. CMMLU(计算机视觉和模式识别联合会议)
CMMLU是计算机视觉和模式识别联合会议的缩写,它是一个国际性的学术会议,专注于计算机视觉和模式识别领域的研究。CMMLU会议通常包括论文提交、研讨会和展览等活动,为研究人员提供了一个交流最新研究成果的平台。
这些评估指标在计算机视觉和自然语言处理领域中具有重要的意义,它们可以帮助研究者了解模型在不同任务上的表现,进而指导模型优化和改进方向。随着技术的不断发展,这些评估指标也在不断更新和完善中,以更好地反映实际应用中的需求和挑战。
 

 

### 查看删除Hugging Face下载的模型 #### 查看已下载的模型 为了查看通过Transformers库自动缓存到本地文件系统的预训练模型,可以访问默认存储路径。对于大多数用户,默认位置如下: - **Linux/macOS**: `~/.cache/huggingface/transformers`[^1] - **Windows**: `%APPDATA%\\huggingface\\transformers` 另一种方法是利用Python脚本动态获取当前配置下的缓存目录: ```python from transformers import cached_files print(cached_files()) ``` 这段代码会打印出所有已经被缓存资源的信息列表。 #### 删除不再需要的模型 如果想要清理这些已经下载但是不再使用的模型文件,可以直接操作上述提到的实际物理路径来手动移除对应的文件夹;也可以编写简单的Python程序实现自动化处理过程: ```python import shutil from pathlib import Path from transformers.utils.hub import get_cache_dir # 获取缓存目录 cache_directory = Path(get_cache_dir()) for model_name in ['bert-base-uncased', 'distilbert-base-cased']: target_path = cache_directory / model_name try: if target_path.exists(): shutil.rmtree(target_path) print(f"Successfully deleted {model_name}") else: print(f"{target_path} does not exist.") except Exception as e: print(e) ``` 此段代码遍历指定名称的模型并尝试将其从磁盘上彻底清除。请注意,在执行任何涉及数据销毁的操作之前应当谨慎确认目标对象确实是可以被安全删除的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人生万事须自为,跬步江山即寥廓。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值