4-bit 的表示方式并不是只能表示整数,而是它可以表示有限数量的 离散值,这些值包括整数和小数。问题的关键在于,4-bit 只能表示16个离散的可能值,这些值的精度非常低,所以无法精确表示像 3.14
这样的具体浮动小数。
为什么4-bit不能精确表示3.14?
我们来详细解释一下:
1. 4-bit 的范围:
4-bit 的表示方式只能存储 16 个不同的值。这些值的分布取决于我们如何划分这 16 个可能的值。例如,如果我们用 4-bit 来表示一个 整数范围,它可以表示 0 到 15 之间的整数,因为 2^4 = 16。
但是,如果我们要表示 浮动小数,就意味着我们不仅要表示整数部分,还要表示小数部分。而 4-bit 只能将这些小数的取值离散化,也就是说,在 16 个值之间,这些值将会是离散的,没有办法精确地表示任何一个具体的小数。
2. 离散化和精度问题:
假设我们用 4-bit 来表示一个小数。由于只有 16 个可用值,我们可能只能把某些小数映射到这些有限的离散值中。例如,我们可能只能表示像 0.0
、0.1
、0.2
这样的值,而不能精确表示 3.14
这样的数字,或者即使能够表示它,它的精度也会丧失,变成类似 3.125
或 3.2
的近似值。
- 整数表示:如果我们用 4-bit 来表示整数,范围是 0 到 15,可以精确表示这 16 个整数值。
- 浮动小数表示:如果我们用 4-bit 来表示浮动小数,比如我们想表示
0.1
或0.2
,这就相当于在 16 个离散的值中分配合适的小数。由于只有 16 个值,很多小数无法精确表示,只能近似。
3. 举个简单的例子:
假设我们要用 4-bit 来表示一个 浮动小数,我们需要将这个范围划分成 16 个可能的值,可能像这样:
0.0
,0.0625
,0.125
,0.1875
,0.25
, …,1.0
这样,每个 4-bit
值都代表了一个小的增量。比如,数字 3.14
不在这些值中,它只能被映射到最接近的某个值(比如 3.125
或 3.2
)。你会发现,通过 4-bit 量化,我们就不能精确地表示像 3.14
这样的浮动小数。
而且这16个离散的值并不是随机分配的,而是按照特定的规则来分配的,通常是根据一定的比例或分布方式来映射到 4-bit 的 16 个可能值中。
4-bit 如何表示值
在使用 4-bit 表示浮动小数时,我们会先决定一个数值范围(比如从 0 到 1 或从 -1 到 1),然后将这个范围划分为 16 个均匀的离散值。每个值对应一个 4-bit 的二进制数。
举个简单的例子,如果我们将 0.0
到 1.0
的范围划分为 16 个离散的值,这些值可能如下:
0.0
,0.0625
,0.125
,0.1875
,0.25
,0.3125
,0.375
,0.4375
,0.5
,0.5625
,0.625
,0.6875
,0.75
,0.8125
,0.875
,1.0
如何分配?
-
均匀分配(线性划分):最常见的方式是将一个给定范围(比如 0 到 1)等分成 16 个小区间,每个区间对应一个 4-bit 值。例如,
0.0
到1.0
的区间可以划分为 16 个等间距的数字。 -
非均匀分配:在某些情况下,可能会根据具体的需求采用 非均匀 的分配策略,比如使用 对数尺度 或 其他类型的量化方法,这可以帮助对某些区间的数值进行更高的精度表示,而对其他区间的数值表示进行较低的精度压缩。这种方法通常用于需要对数据进行不同精度处理的场景,特别是在处理某些非均匀分布的数据时。
为什么这样分配?
-
线性划分:通常情况下,最简单且有效的方法是线性划分,即在数值范围内均匀分配 16 个离散值。这样做的好处是它能简单地通过固定的规则来映射数值,且在大多数情况下可以保持一定的计算效率。
-
非均匀划分:如果我们知道某些数值区间出现频率较高(比如数据集中某些值的分布比较集中),我们可能会使用非均匀分配方式来更精确地表示这些区间。比如在浮动点数表示时,对于数值较大的部分,可以用较低的精度来表示,而对于较小的数值区间,则可以用较高的精度。
举个实际例子
假设你需要用 4-bit 来量化一个数值范围 [0.0, 1.0]
。使用 均匀分配,你会将该范围等分为 16 个区间,每个区间对应一个 4-bit 值。16 个离散的值可能如下:
0.0
,0.0625
,0.125
,0.1875
,0.25
,0.3125
,0.375
,0.4375
,0.5
,0.5625
,0.625
,0.6875
,0.75
,0.8125
,0.875
,1.0
然后,如果你的模型需要表示一个像 0.2
这样的数字,它会被映射到最接近的离散值 0.1875
或 0.25
,取决于量化规则。这是因为 4-bit 的精度只允许你使用这些固定的值,而不是一个精确的小数。
总结
-
4-bit 的 16 个离散值是根据一定的规则分配的,通常是 均匀分配,即将一个范围等分为 16 个区间。
-
这些离散值并不是随机的,而是有规律地根据量化的规则生成的,可以是线性分布,也可以根据特定需求采用其他方式(例如对数分布)。
-
这种有限的离散值表示方式是量化过程的一部分,它会导致精度的损失,特别是对于需要精确表示的小数值。
-
4-bit 只能够表示 16个离散的值,这些值通常是离散的整数或小数。
-
对于 浮动小数,由于其精度非常低(只有 16 个可选值),我们无法精确表示一个小数,特别是像
3.14
这样的数字。它只能用离散的、接近的值来近似表示。
所以,4-bit 不能精确表示像 3.14
这样的浮动小数,而只能表示有限数量的离散值,这些值会是一个非常粗略的近似。