4-bit 的表示方式并不是只能表示整数,而是它可以表示有限数量的 离散值,这些值包括整数和小数。问题的关键在于,4-bit 只能表示16个离散的可能值,这些值的精度非常低,所以无法精确表示像 3.1

4-bit 的表示方式并不是只能表示整数,而是它可以表示有限数量的 离散值,这些值包括整数和小数。问题的关键在于,4-bit 只能表示16个离散的可能值,这些值的精度非常低,所以无法精确表示像 3.14 这样的具体浮动小数。

为什么4-bit不能精确表示3.14?

我们来详细解释一下:

1. 4-bit 的范围

4-bit 的表示方式只能存储 16 个不同的值。这些值的分布取决于我们如何划分这 16 个可能的值。例如,如果我们用 4-bit 来表示一个 整数范围,它可以表示 0 到 15 之间的整数,因为 2^4 = 16。

但是,如果我们要表示 浮动小数,就意味着我们不仅要表示整数部分,还要表示小数部分。而 4-bit 只能将这些小数的取值离散化,也就是说,在 16 个值之间,这些值将会是离散的,没有办法精确地表示任何一个具体的小数

2. 离散化和精度问题

假设我们用 4-bit 来表示一个小数。由于只有 16 个可用值,我们可能只能把某些小数映射到这些有限的离散值中。例如,我们可能只能表示像 0.00.10.2 这样的值,而不能精确表示 3.14 这样的数字,或者即使能够表示它,它的精度也会丧失,变成类似 3.1253.2 的近似值。

  • 整数表示:如果我们用 4-bit 来表示整数,范围是 0 到 15,可以精确表示这 16 个整数值。
  • 浮动小数表示:如果我们用 4-bit 来表示浮动小数,比如我们想表示 0.10.2,这就相当于在 16 个离散的值中分配合适的小数。由于只有 16 个值,很多小数无法精确表示,只能近似。
3. 举个简单的例子

假设我们要用 4-bit 来表示一个 浮动小数,我们需要将这个范围划分成 16 个可能的值,可能像这样:

  • 0.0, 0.0625, 0.125, 0.1875, 0.25, …, 1.0

这样,每个 4-bit 值都代表了一个小的增量。比如,数字 3.14 不在这些值中,它只能被映射到最接近的某个值(比如 3.1253.2)。你会发现,通过 4-bit 量化,我们就不能精确地表示像 3.14 这样的浮动小数。

而且这16个离散的值并不是随机分配的,而是按照特定的规则来分配的,通常是根据一定的比例或分布方式来映射到 4-bit 的 16 个可能值中。

4-bit 如何表示值

在使用 4-bit 表示浮动小数时,我们会先决定一个数值范围(比如从 0 到 1 或从 -1 到 1),然后将这个范围划分为 16 个均匀的离散值。每个值对应一个 4-bit 的二进制数。

举个简单的例子,如果我们将 0.01.0 的范围划分为 16 个离散的值,这些值可能如下:

  • 0.00.06250.1250.18750.250.31250.3750.43750.50.56250.6250.68750.750.81250.8751.0

如何分配?

  1. 均匀分配(线性划分):最常见的方式是将一个给定范围(比如 0 到 1)等分成 16 个小区间,每个区间对应一个 4-bit 值。例如,0.01.0 的区间可以划分为 16 个等间距的数字。

  2. 非均匀分配:在某些情况下,可能会根据具体的需求采用 非均匀 的分配策略,比如使用 对数尺度其他类型的量化方法,这可以帮助对某些区间的数值进行更高的精度表示,而对其他区间的数值表示进行较低的精度压缩。这种方法通常用于需要对数据进行不同精度处理的场景,特别是在处理某些非均匀分布的数据时。

为什么这样分配?

  • 线性划分:通常情况下,最简单且有效的方法是线性划分,即在数值范围内均匀分配 16 个离散值。这样做的好处是它能简单地通过固定的规则来映射数值,且在大多数情况下可以保持一定的计算效率。

  • 非均匀划分:如果我们知道某些数值区间出现频率较高(比如数据集中某些值的分布比较集中),我们可能会使用非均匀分配方式来更精确地表示这些区间。比如在浮动点数表示时,对于数值较大的部分,可以用较低的精度来表示,而对于较小的数值区间,则可以用较高的精度。

举个实际例子

假设你需要用 4-bit 来量化一个数值范围 [0.0, 1.0]。使用 均匀分配,你会将该范围等分为 16 个区间,每个区间对应一个 4-bit 值。16 个离散的值可能如下:

  • 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 1.0

然后,如果你的模型需要表示一个像 0.2 这样的数字,它会被映射到最接近的离散值 0.18750.25,取决于量化规则。这是因为 4-bit 的精度只允许你使用这些固定的值,而不是一个精确的小数。

总结

  • 4-bit 的 16 个离散值是根据一定的规则分配的,通常是 均匀分配,即将一个范围等分为 16 个区间。

  • 这些离散值并不是随机的,而是有规律地根据量化的规则生成的,可以是线性分布,也可以根据特定需求采用其他方式(例如对数分布)。

  • 这种有限的离散值表示方式是量化过程的一部分,它会导致精度的损失,特别是对于需要精确表示的小数值。

  • 4-bit 只能够表示 16个离散的值,这些值通常是离散的整数或小数。

  • 对于 浮动小数,由于其精度非常低(只有 16 个可选值),我们无法精确表示一个小数,特别是像 3.14 这样的数字。它只能用离散的、接近的值来近似表示。

所以,4-bit 不能精确表示像 3.14 这样的浮动小数,而只能表示有限数量的离散值,这些值会是一个非常粗略的近似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值