示例代码:
def model_dump(self: T, **kwargs) -> dict:
# 调用父类(Pydantic 的 BaseModel)的 model_dump 方法,目的是先让父类把对象转换为字典,然后再做额外处理。
dict_ = super().model_dump(**kwargs)
for key, value in dict_.items():
if isinstance(value, uuid.UUID):
dict_[key] = str(value)
return dict_
首先这段代码并不是在“调用自己”,而是在调用父类(Pydantic 的 BaseModel)的 model_dump 方法,目的是先让父类把对象转换为字典,然后再做额外处理。下面详细解释:
-
调用父类的 model_dump 方法
dict_ = super().model_dump(**kwargs)
- 作用:
使用父类(Pydantic 的 BaseModel)提供的 model_dump 方法,将当前对象转换为字典。 - 人话解释:
就像你请一个专家先把一个复杂对象“拍照”(转换成字典),然后你再在照片上做一些“后期修图”(额外处理)。
- 作用:
-
对转换后的字典进行额外处理
for key, value in dict_.items(): if isinstance(value, uuid.UUID): dict_[key] = str(value)
- 作用:
遍历字典中的每个键值对,如果某个值是 UUID 类型,则将其转换为字符串。 - 人话解释:
就像你检查照片里每个元素,如果发现有个标识符(UUID)还不是“人可读”的文本,就把它转成文本格式。
- 作用:
-
返回处理后的字典
return dict_
- 作用:
返回已经经过转换和处理后的字典,这个字典就可以直接用于存储或传输。
- 作用:
举例说明
假设有一个模型实例,其数据如下:
id
字段的值为UUID("123e4567-e89b-12d3-a456-426614174000")
score
字段的值为100
步骤1:调用父类方法
父类的 model_dump
会把这个实例转换成字典,得到:
{"id": UUID("123e4567-e89b-12d3-a456-426614174000"), "score": 100}
步骤2:处理 UUID 字段
遍历字典时发现 id
的值是一个 UUID 对象,所以将它转换为字符串,结果变成:
{"id": "123e4567-e89b-12d3-a456-426614174000", "score": 100}
步骤3:返回最终结果
最终返回的字典可以直接被 MongoDB 或其他 JSON 序列化工具使用,因为所有的 UUID 都已经变成了字符串。
总结
-
为什么调用父类方法?
为了复用 BaseModel 的数据转换功能,不需要重新实现一个把对象转换成字典的过程,只需在其基础上做额外处理。 -
不是调用自己:
使用super().model_dump(**kwargs)
并不会导致递归调用,而是调用了父类的方法。这样既能利用父类现有的功能,又能针对特定需求(如转换 UUID)做定制化处理。
这样设计的好处是代码复用、逻辑清晰,也方便后续扩展其他额外处理逻辑。
等等~~你是不是还有其他疑问
使用父类(Pydantic 的 BaseModel)提供的 model_dump 方法,将当前对象转换为字典。这里的对象和字典有什么区别,为什么一定要转换成字典,不能直接存储对象么?
在 Python 中,一个“对象”通常是一个类的实例,它不仅包含数据(属性),还包含行为(方法)和其他元信息。
而一个“字典”仅仅是存储键值对的简单数据结构,没有任何额外的行为或方法。
字典比较纯洁。。
为什么要转换成字典?
1. 数据结构简单且易于序列化:
数据库(比如 MongoDB)需要存储的数据格式一般是 JSON 或 BSON(二进制 JSON),这些格式只接受普通的数据结构(字典、列表、字符串、数字等)。
- 对象的问题:一个对象可能包含方法、属性、状态和其他一些不适合直接存储到数据库的信息。
- 字典的优势:字典只包含数据,结构简单,转换成 JSON 格式非常直接。
2. 去除多余的信息:
通过调用 model_dump
,我们只获取模型的实际数据,不会把那些不需要的类方法或内部状态也存进去。这可以确保数据更干净、更容易维护。
举例说明
假设我们有一个 Pydantic 模型类 User
:
from pydantic import BaseModel
class User(BaseModel):
name: str
age: int
user = User(name="Alice", age=30)
-
对象形式:
user
是一个User
类的实例,它除了数据(name
和age
)外,还带有一些类方法、类型信息等,比如user.__class__
、user.dict()
等。
如果直接把这个对象存入数据库,数据库不知道如何处理类实例中的方法和元数据。 -
字典形式:
调用user.dict()
或user.model_dump()
后,得到一个字典:{"name": "Alice", "age": 30}
这个字典只包含键值对,是标准的 JSON 格式数据,完全符合 MongoDB 的存储要求。
数值举例:
-
假设有个对象:
- 对象内部存储:
User 对象: - name: "Alice" - age: 30 - 内部方法: validate(), json(), ...(这些方法不需要存储)
- 对象内部存储:
-
转换成字典后:
{"name": "Alice", "age": 30}
这个字典可以直接被转换成 JSON:
{ "name": "Alice", "age": 30 }
这种格式的数据可以直接存入 MongoDB,因为它符合 BSON 格式的要求。
总结
-
对象 vs 字典:
- 对象包含数据和行为,结构复杂。
- 字典仅包含数据,结构简单,适合序列化为 JSON/BSON。
-
为什么转换成字典:
数据库存储要求简单、纯粹的数据格式,直接存储对象可能会带入不必要的信息或导致序列化错误,因此需要先将对象转换成字典,只保留数据部分。