目录
问题
两个信号的相关,以下的区别是什么?
coscor = dot(y/norm(y),b/norm(b))
dotprodcor = dot(y,b)
pearson = corrcoef(y,b)
crosscor = xcorr(y,b)
coscor =
-0.2933
dotprodcor =
-80.4323
pearson =
1.0000 -0.2959
-0.2959 1.0000
crosscor
互相关与卷积
xcorr互相关
xcorr2 2-D cross-correlation
normxcorr2 归一化二维互相关性
conv卷积
conv2二维卷积
2-D gaussian filtering
xcov互协方差
xcov 计算其输入的均值,减去均值,然后调用 xcorr。
相关系数
cov协方差与协方差矩阵
corrcoef相关系数与相关系数矩阵
相关系数(Correlation Coefficient)是统计学中的一个重要概念,用于衡量两个变量之间的线性相关程度。当两个变量在散点图上呈现为一条直线或接近一条直线时,表示它们之间存在线性关系,此时可以使用相关系数来量化这种关系的强度和方向。
相关系数可以通过协方差来表示。相关系数是协方差的一种标准化形式。它通过除以两个变量的标准差来标准化协方差,从而消除变量量纲的影响,其值位于-1和1之间。用 r r r或 ρ ρ ρ表示。
corrcoef计算相关系数矩阵
图像均值、标准差和相关系数
mean2、std2 和 corr2 函数计算图像的标准统计量。mean2 和 std2 计算矩阵元素的均值和标准差。corr2 计算两个相同大小的矩阵之间的相关系数。
这些函数是 mean、std 和 corrcoef 函数的二维版本。