总体均值&样本均值

总体均值

离散型随机变量

设离散型随机变量 X X X的分布律是 p ( x i ) p(x_i) p(xi) i = 1 , 2 , … i = 1, 2, \ldots i=1,2,,若

∑ i ∣ x i ∣ p ( x i ) < + ∞ \sum_{i} |x_i| p(x_i) < +\infty ixip(xi)<+

则称

E ( X ) = ∑ i x i p ( x i ) E(X)=\sum_{i} x_i p(x_i) E(X)=ixip(xi)

为离散型随机变量 X X X的数学期望,简称期望或均值。

  • 分布律 p ( x i ) p(x_i) p(xi):表示随机变量 X X X取各个可能值 x i x_i xi的概率。
  • 条件:如果 ∑ i ∣ x i ∣ p ( x i ) < + ∞ \sum_{i} |x_i| p(x_i) < +\infty ixip(xi)<+,即所有可能值的绝对值与对应概率的乘积之和是有界的,则可以计算数学期望。
  • 数学期望 E ( X ) E(X) E(X):通过以下公式计算:
    E ( X ) = ∑ i x i p ( x i ) . E(X) = \sum_{i} x_i p(x_i). E(X)=ixip(xi).

离散型随机变量的期望值是所有可能值与其对应概率的乘积之和。

连续型随机变量

设连续型随机变量 X X X的概率密度是 f ( x ) f(x) f(x),若
∫ − ∞ + ∞ ∣ x ∣ f ( x )   d x < + ∞ , \int_{-\infty}^{+\infty} |x| f(x) \, {\rm d}x < +\infty, +xf(x)dx<+,
则称
E ( X ) = ∫ − ∞ + ∞ x f ( x )   d x E(X) = \int_{-\infty}^{+\infty} x f(x) \, {\rm d}x E(X)=+xf(x)dx
为连续型随机变量 X X X的数学期望,简称期望或均值。

这个定义说明了如何计算连续型随机变量的期望值。具体来说:

  • 首先,要求积分 ∫ − ∞ + ∞ ∣ x ∣ f ( x )   d x \int_{-\infty}^{+\infty} |x| f(x) \, dx +xf(x)dx是有限的。
  • 然后,通过计算 ∫ − ∞ + ∞ x f ( x )   d x \int_{-\infty}^{+\infty} x f(x) \, dx +xf(x)dx来得到连续型随机变量 X X X的期望值 E ( X ) E(X) E(X)

这种定义方式与离散型随机变量的期望值计算类似,但使用的是积分而不是求和。

样本均值

x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn为取自某总体的样本,其算术平均值称为样本均值,一般用 x ˉ \bar{x} xˉ表示,即

x ˉ = x 1 + x 2 + ⋯ + x n n = 1 n ∑ i = 1 n x i . \bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i. xˉ=nx1+x2++xn=n1i=1nxi.

- x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn是从总体中抽取的样本值。
- n n n是样本的数量。

  • 样本均值 ( x ˉ \bar{x} xˉ):是一组数据的算术平均值。
  • 公式:样本均值通过将所有样本值相加后除以样本数量 n n n来计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值