基于注意力机制的知识图谱关系预测 ACL 2019

在这里插入图片描述
论文链接:https://arxiv.org/pdf/1906.01195.pdf
代码链接:https://github.com/deepakn97/relationPrediction
论文来源:ACL 2019

摘要

背景:近年来知识图谱(KGs)的激增,再加上实体之间缺少关系(链接)形式的不完整或部分信息,引发了大量关于知识库补全(也称为关系预测)的研究。最近研究表明,基于CNN的模型能够生成更丰富、更有表现力的特征嵌入,在关系预测方面也有很好的表现。

问题:然而,我们观察到这些KG嵌入独立地处理三元组,因此不能覆盖在三元组周围的本地邻居中固有的隐含的复杂和隐藏的信息。

本文:提出了一种新的基于注意的特征嵌入方法,该方法能同时捕获任意给定实体邻域内的实体特征和关系特征。此外,我们还在模型中封装了关系集群和多跳关系。

1、引言

知识图谱(KGs)将知识库(KBs)表示为一个有向图,其节点和边分别表示实体和实体之间的关系。例如,在图1中,triple (London, capital of, United Kingdom)表示为两个实体:London和United Kingdom,以及连接它们的关系(capital of)。
在这里插入图片描述

KGs被广泛应用于语义搜索等领域,对话生成和问题回答等等。

问题:然而,KGs通常会丢失关系。这个问题引发了知识库补全的任务(也称为关系预测),它需要预测给定的三元组是否有效。

目前最先进的关系预测方法主要是基于知识嵌入的模型。它们被广泛地归类为翻译模型和基于CNN的模型。虽然翻译模型使用简单的操作和有限的参数来学习嵌入,但是它们产生的嵌入质量很低。相比之下,基于CNN的模型由于其参数效率和对复杂关系的考虑,学习到更具表达性的嵌入。

问题:然而,翻译和基于CNN的模型都独立地处理每个三元组,因此未能封装给定实体附近固有的和丰富潜在的语义关系到知识图谱中。

基于上述观察结果,我们提出了一种基于广义注意力的关系预测图嵌入方法。对于节点分类,图注意力网络(graph attention networks, GATs) (Velickovi c et al., 2018)被证明关注于图中最相关的部分,即1跳邻域内的节点特征。

在给定一个KG和关系预测任务的情况下,我们的模型通过对给定实体/节点的多跳邻域中的实体(节点)和关系(边缘)特征进行引导,对注意机制进行了概括和扩展。

我们的想法是:

  1. 捕获围绕给定节点的多跳关系
  2. 封装实体在各种关系中所扮演角色的多样性
  3. 巩固现有的知识在语义上相似的关系集群

我们的模型通过给邻居中的节点分配不同的权重(注意力),并通过分层迭代的方式传播注意力来实现这些目标。

然而,随着模型深度的增加,远处实体的贡献呈指数递减。为了解决这个问题,我们使用了(Lin et al., 2015)提出的关系组合来引入n-hop邻居之间的辅助边,这样就实现了实体之间的知识流动。

我们的架构是一个编码器-解码器模型,其中我们的广义图注意模型和ConvKB (Nguyen et al., 2018)分别扮演编码器和解码器的角色。

此外,该方法可以扩展为学习文本嵌入图的有效嵌入(KOTLERMAN et al., 2015),其中全局学习在过去已经被(Berant et al., 2015)和(Berant et al., 2010)证明是有效的。

2、相关工作

近年来,人们提出了几种不同的KG嵌入量来进行关系预测。大致可以分为:
(i) 基于成分的,
(ii)基于翻译的,
(iii)基于CNN的,
(iv)基于图的模型。

RESCAL 、NTN和全息嵌入模型(HOLE)是基于成分模型的例子。RESCAL和NTN都使用张量积来捕获丰富的相互作用,但是需要大量的参数来建模关系,因此计算起来很麻烦。为了克服这些缺点,HOLE使用实体嵌入的循环关联来创建更高效和可伸缩的组合表示。

相比之下,TransE 、DISTMULT和ComplEx等翻译模型提出了可能更简单的模型。TransE将头尾实体之间的转换操作视为关系。DISTMULT使用双线性对角模型学习嵌入,这是NTN和TransE中使用双线性目标的一个特例。DISTMULT使用加权元素点积来建模实体关系。ComplEx通过使用复杂的嵌入和厄米点积来概括DISTMULT。这些翻译模型速度更快,需要的参数更少,而且相对容易训练,但导致表达性较差的KG嵌入。

最近,提出了两种基于CNN的关系预测模型,分别是ConvE和ConvKB。ConvE使用了嵌入上的二维卷积来预测链接。它由卷积层、全连接投影层和内积层组成,用于最终的预测。使用多个filter生成不同的特征图来提取全局关系。这些特征映射的连接表示一个输入三元组。这些模型是参数有效的,但是独立地考虑每个三元组,而不考虑三元组之间的关系。

基于图的神经网络模型R-GCN是将图卷积网络(GCNs)应用于关系数据的扩展。它对每个实体的邻域进行卷积运算,并赋予它们相等的权重。这个基于图的模型并不优于基于CNN的模型。现有的方法要么只关注实体特征来学习KG嵌入,要么不相交地考虑实体特征和关系。相反,我们提出的图注意模型整体地捕获了KG中任意给定实体的n-hop邻居中的多跳和语义上类似的关系。

3、提出的方法

3.1、背景知识补充

知识图谱可以表示为 ζ = ( ϵ , R ) ζ=(ϵ,R) ζ=(ϵ,R),其中 ϵ ϵ ϵ R R R 分别表示集合中的实体(结点)和关系(边)。对于三元组 ( e s , r , e o ) (e_s,r,e_o) (es,r,eo)可以表示两个实体节点 e s , e o e_s,e_o es,eo之间存在边 r r r。嵌入模型试图学习实体、关系以及得分函数的有效表示,以达到当给定一个三元组 t = ( e s , r , e o ) t=(e_s,r,e_o) t=(es,r,eo)作为输入时,得分函数 f ( t ) f(t) f(t) 可以给出 t t t 是真实三元组的概率。

3.2、图注意力神经网络(GATs)

图注意力神经网络 (GANs)不同于图卷积神经网络(GCNs)将所有邻居实体的信息赋予相同权重的策略,而是采用了按照邻居实体结点对给定实体结点的不同重要程度分配不同权重的策略。 x = { x 1 ⃗ , x 2 ⃗ , ⋯   , x N ⃗ } x=\{\vec{x_1},\vec{x_2},\cdots,\vec{x_N}\} x={ x1 ,x2 ,,xN }表示该神经网络中一层结点中的输入特征集合。该层生成的变换后的特征向量为 x ′ = { x 1 ⃗ ′ , x 2 ⃗ ′ , ⋯   , x N ⃗ ′ } x'=\{\vec{x_1}',\vec{x_2}',\cdots,\vec{x_N}'\} x={ x1 ,x2 ,,xN },其中 x i ⃗ \vec{x_i} xi x i ⃗ ′ \vec{x_i}' xi 分别表示实体 e i e_i ei的输入嵌入向量与输出嵌入向量, N N N 表示实体(结点)的个数。单独的 GAT 层可以描述为下述公式: e i j = a ( W x i ⃗ , W x j ⃗ ) (1) e_{ij}=a\left(W\vec{x_i},W\vec{x_j}\right) \tag{1} eij=a(Wxi ,Wxj )(1)其中 e i j e_{ij} eij表示知识图谱中边 ( e i , e j ) (e_i,e_j) (ei,ej)的注意力值, W W W 是一个可以将输入特征映射到更高维的输出特征空间中的参数化的线性转化矩阵, a a a 是所选择的注意力函数。

每个边的注意力值 ( e i , e j ) (e_i,e_j) (ei,ej)表示边的特征对源结点 e i e_i ei的重要程度。此处相对注意力值 α i j \alpha_{ij} αij通过对邻居集合中得出的所有注意力值进行 softmax 运算得出。公式(2)展示了一个输出层。 x i ⃗ ′ = σ ( ∑ j ∈ N i α i j W x j ⃗ ) (2) \vec{x_i}'=\sigma\left(\sum_{j\in\mathcal{N}_i}\alpha_{ij}W\vec{x_j}\right) \tag{2} xi =σjNiαijWxj (2)GAT 运用多头注意力来稳定学习过程。连接 K K K 个注意头的多头注意力过程如公式(3)所示: x i ⃗ ′ = ∥ k = 1 K σ ( ∑ j ∈ N i α i j k W k x j ⃗ ) (3) \vec{x_i}'=\Vert_{k=1}^K\sigma\left(\sum_{j\in\mathcal{N}_i}\alpha_{ij}^kW^k\vec{x_j}\right) \tag{3} x

  • 5
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值